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PREFACE

The group of papers in this collection represent significant steps in
the development of the statistical theory of turbulence. They were all
published prior to 1950; at that time our physical understanding of
turbulence was already adequate for the study of many related sci-
entific questions. The concepts of the correlation coefficient, spectrum
function, and local similarity which had proved so helpful in revealing
the structure of turbulence had been developed. Further advances
have been at the expense of considerably greater effort.

The statistical theory may have begun with the Taylor paper of 1921,
in which the concept of the Lagrangian correlation coefficient was
advanced and which provided a theoretical basis for turbulent diffusion.
It was not until 1935, however, that the approach, in a revised form,
was taken up again by Taylor who defined many of the properties of
isotropic turbulence. This was followed by the von Kérmén and
Howarth (1938) demonstration of the tensor properties of the Eulerian
correlation coefficient and their formulation of the relationship be-
tween the double and triple coeflicients through the Navier-Stokes
equations, At about the same time, Taylor (1938) showed the trans-
form relationship between the correlation coefficient and the energy
spectrum function. A review of the theory up to the early 40’s with
some interesting applications to problems of diffusion is given by
Dryden (1943). The Taylor concept of the energy spectrum has domi-
nated turbulence research from this period to the present. The simi-
larity hypothesis of Kolmogoroff (1941) served as the starting point of
many investigations and led to general theories of spectral similarity
such as those proposed by von Kérman and Lin (1948, 1949).

The collection should serve as a convenient reference to what is now
classical literature for those interested in fluid turbulence in itself.
Workers in other fields, some peripheral and others rather far afield
from turbulence, find the methods developed in the statistical theory
Increasingly useful. For them, and the editors include themselves
among this group, it is hoped that this volume will serve as a primary
reference. Some of the peripheral problems which have already been
attacked using these approaches include the dispersion of particles,
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drop break-up, particle coagulation, mixing with and ¥ )out chemical
reaction, the spectra of surface waves and solar electrudynamics. As
yet little studied are heat and mass transfer to particles suspended in.
a turbulent fluid.

The theoretical methods developed for analyzing the turbulence
spectrum will also have application to other spectral problems such as
particle size distributions in atmospheric aerosols and clouds, Here,
again, we encounter the phenomenon of transfer (of matter in this
case) to the upper end of the size spectrum by a non-linear interaction
among the components at the lower end. Again, there may be “dissi-
pation” in the form of local sedimentation or drop break-up.

A brief bibliography of recent theoretical papers dealing with these
applications of the statistical theory follows:

Particle Mechanics

1. Tcuen, Mean Value and Correlation Problems Connected with
the Motion of Small Particles Suspended in a Turbulent Fluid,
Martinus Nijhoff, The Hague, 1947.

2. Comrsiy, S., and LumMmcLEy, J., “On the Equation of Motion for a
Particle in a Turbulent Fluid,” App. Sci. Research A6, 114 (1956).

3. FriepLanDER, S. K., “Behavior of Suspended Particles in a Turbu-
lent Fluid,” A. I. Ch. E. Journal 3, 381 (1957).

Drop Break-up
1. KorLmocoroFF, A. N., “On the Disintegration of Drops in Turbu-
lent Flow” (in Russian), Doklady Akad. Nauk S.S.S.R. 66,
825 (1949).
2. Hinzg, J. O., “Fundamentals of the Hydrodynamic Mechanism of
Splitting in Dispersion Processes,” A. 1. Ch. E. Journal 1, 289
(1955).

Particle Coagulation
1. Levich, B. L., “Theory of Colloid Coagulation in a Turbulent Fluid
Stream” (in Russian), Doklady Akad. Nauk S.S.S.R. 99, 809
(1954).
2. Sa¥rmaN, P. G, and Turneg, J. S., “On the Collision of Drops in
Turbulent Clouds,” J. Fluid Mech. 1, 16 (1956).

Mixing and Reaction
1. Corrsin, S., “On the Spectrum of Isotropic Temperature Fluctua-
tions in an Isotropic Turbulence,” J. Appl. Phys. 22, 469 (1951).
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2. CormsIN, S{ Statistical Behavior of a Reacting Mixture in Iso-
tropic Turbuence,” Physics of Fluids 1, 42 (1958).

3. BarcHELOR, G. K., “Small-Scale Variation of Convected Quantities
Like Temperature in Turbulent Fluid,” Parts 1 and 2, J. Fluid.
Mech. 5, 113 (1959).

Surface Wave Spectra
1. Parres, O. M., “The Equilibrium Range in the Spectrum of
Wing-Generated Waves,” J. Fluid Mech. 4,426 (1958).

Heat and Mass Transfer to Particles
1. Tunrrzki, N. N., “On Diffusional Process in Conditions of Natural
Turbulence” (in Russian), ]. Phys. Chem. (U.S.S.R.) 20, 1137
(1946).

Particle Size Spectra
1. FriepLANDER, S. K., “On the Particle Size Spectrum of Atmospheric
Aerosols,” J. Meteor. 17, 373 (1960).

Solar Physics
1. Cowring, T. G., Magnetohydrodynamics, Interscience Publishers,
Inc., New York, 1957, especially pp. 92-98.
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DIFFUSION BY CONTINUOUS MOVEMENTS
By G. 1. TavLor.

[Received May 22nd, 1920.—Read June 10th, 1920.]

Introduction.

It has been shown by the author,* and others, that turbulent motion
is capable of diffusing heat and other diffusible properties through the
interior of a fluid in much the same way that molecular agitation gives
rise to molecular diffusion. In the case of molecular diffusion the rela-
tionship between the rate of diffusion and the molecular constants is
known ; a large part of the Kinetic Theory of Gases is devoted to this
question. On the other hand, nothing appears to be known regarding the
relationship between the constants which might be used to determine any
particular type of turbulent motion and its “ diffusing power.”

The propositions set down in the following pages are the result of
efforts to solve this problem.

In order to simplify matters as much us possible the fransmission of
heat in one direction only, that of the axis of z, will be considered. We
shall take the case of an incompressible fluid whose ftemperature 8, at
time ¢ = 0, depends only ou z, and increases or decreases uniformly with
x. Initially therefore 06/0z is constant and equal to B8, say.

Now suppose that the fluid is moving in turbulent motion, so that
the distribution of temperature is continually altering. Suppose that the
turbulent motion could be defined by means of the Lagrangian equations
of fluid motion, so that the coordinates (z, y, 2) of a particle are given in
terms of its initial coordinates (@, b, ¢) at the time ¢ = 0, and of ¢.

Since the temperature of any particle is supposed to remain constant
during the motion, the temperature at the point (z, y, 2) at time £, which
will be represented by the symbol 6 (z, y, 2) is 0 (a, 0), which represents
the temperature at £ = @ at time ¢ = 0.

* ‘“Kddy Motion in the Atmosphere,’” Phil, Trans., 1915, p. 1.
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Since the rate of increase in temperature with z|  constant when
t=0, 8(, 0) = Bz, 0)—(x—a)B.

The average rate at which heat is being conveyed across unit area of a
plane perpendicular to the axisof z is evidently equal to — po8 multiplied
by the average value of u(x—a) over a large area of a plane perpendicular
to the axis of z. In thess expressions u represents the velocity of a
particle of fluid in the direction of the axis of z, p is the density, and o
the specific heat, so that po is the heat capacity of unit volume of the
fluid.

No doubt the average value of w(z—a), which must be obtained from
considerations of the particular nature of the turbulent motion in question,
depends on the mean motion of the fluid; bub if experimental data exist,
a8 in fact they do, which enable its value to be calculated, it is of interest
to enquire what types of turbulent motion are capable of producing the
observed distribution of temperature.

In order to simplify matters still further it will be assumed that the
turbulent motion is uniformly distributed throughout space. The mean
value of u(z—a) will then be the same for every layer and will be equal
to the mean value throughout space. This quantity will be expressed by
the symbol (w(z—a)].

Owing to the fact that the fluid is incompressible [u(zx—a)] could be
calculated either by taking a rectangular element 8z dydz, at time ¢, finding
the corresponding value of «w(z—a) and integrating throughout space; or
by taking an element dadbde at time £ = 0, finding the ecorresponding
value of u(z—a) ab time ¢, and integrating. The second method will be

adopted.
Fixing our attention on a particle of fluid, it will be noticed that
Oz !
U =a and z—a —J; udt.
Hence, writing X for z—a,

[u@—a)] = [X% %[ = er‘c‘i‘ (X%}

In this ideally simplified system therefore the rate at which heat is
transferred in the direction of the axis of # is determined by the rate of
increase of the mean value of the square of the distance, parallel to the
axis of z, which is moved through by a particle of fluid in time ¢.

If a physicist were fo try to define the characteristic features of any
particular case of turbulent motion, with a view to discussing statistically
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its effect as a col. .ctor of heat, he would probably first fix his attention
on the mean energy of the motion. That is to say, he would determine
[«?].

He would then perhaps notice that it is not sufficient to determine
[«*]. With a given value of [%?] ib is possible for the turbulent motion to
be associated with a small or a large transfer of heat, according to whether
a particle frequently, or infrequently, reverses its direction of motion. It
would therefore be necessary to define some characteristic of the motion
which differentiates between the cases in which the changes in the velocity
of a particle are rapid, and those in which they are slow. A suitable

0\ &
characteristic to choose would be [(%) ]
Further investigation would show that it is necessary also to define

(5] - [

The relationship between

pAmama i (17 (97T, -

is discussed in the following pages. The problem is in some respects
similar to that known as ‘ The drunkard’s walk,” or to Karl Pearson’s*
problem of the random migration of ingecis, when the motion is limited
to one dimension; but in the course of the investigation some curious
propositions have come to light concerning the mean values of continuously
varying quantities which may perhaps be of interest to mathematicians,
ag well as to physicists.

In the course of the work no discussion of the convergency of the
series used is nttempted. The work must therefore be regarded as incom-
plete. The author feels that such gquestions might be examined with ad-
vantage by a pure mathematician, and it is in the hope of interesting one
of them that he wishes to offer this paper to the London Mathematical
Society.

Discontinuous Motion.

Before proceeding to consider the continuous version of the problem
of random migration in one dimension, the discontinuous case will be

* Drapers’ Company Memoirs,



extended slightly, so as to make it bear some reser(lwzance to the con-
tinuous case. ’

Suppose that a point starts moving with uniform velocity » along a
line, and that after a time = it suddenly makes a fresh start and either
continues moving forward with velocity v or reverses its direction and
moves back over the same path with the same velocity v. Suppose that
this process is repeated n times and that we consider the mean values of
the quantity concerned for a very large number of such paths,

Let 2, be the distance moved over in the r-th interval. Then &, is
numerically equal to v+, but its sign may be either positive or negative
and each occurs an equal number of times in considering the average. If
X, is the standard deviation or *root mean square” of the distance
moved by the point from the original position after time nr, then

X: = [y tagt o+ +2a)*],

where the square bracket indicates that the mean value is taken for all
the paths.

Hence X2 = nd®+2[2 292254 F 2zt ], v
where ' d = vT. "
If there is no correlation between any two z's,
[z.2z,] = O.
Hence X =ad’, or X,=dyn=uvy(T),

where T, is the total time during which the migration has been taking
place. It will be seen therefore that X, is proportional to 4/1".

Actually in a turbulent fluid or in any continuous motion there is
necessarily a correlation between the movement in any one short interval
of time and the next. This correlation will evidently increase as the in-
terval of time diminishes, till, when the time is short compared with the
time during which a finite change in velocity takes place, the coefficient of
correlation tends to the limiting value unity.

This idea will now be introduced into equation (1).

To begin with let us make the arbitrary assumption that =z, is corre-
lated with #,,, by a correlation coefficient ¢. Suppose also that the
partial correlations of x, with %, .2, @ris, ... are all zero. The correlation
coefficient between z, and 2,,, is then ¢ Between z, and @, it is ¢*

The value of 2[x,zy+z 25+ ... +2ps+...] is then
2a2 {nc+mnm—1) A+ n—2)®+... +c*}.




The series in t;h;a . | bracket is easily summed.  Substituting its value
in (1) it will be found that.

e 2c2(1—c")
xi= & {nt 72~

or, putting 7 = Tuf7, and & = v,

XZ:@“{(%HT) T—Q—“i(ll—:;)—g)—f} @)

By reducing 7 indefinitely we can evidently make the case approximate to

some sort of continuous migration, but in order that X,, » and T\ may be

finite and tend to a definite limit as 7 is decreased, it is necessary that
1+¢ 2e¢?(1—c) 72

(1——__6> T and dL—of

say, 1—c must be proportional to 7.

must also tend to a definite limit. That is to

Let IT—:—O tend to the limit 4 when = and 1—¢ tend to zero.

Then X? tends to the limiting value
0? {24 T, —24%(1 —e~"ul4)}
or, dropping the suffixes which are no longer necessary,
VXY =va/{24T—24% 1 —e~ 114}, (8)

where X is the distance traversed by a particle during a flight extending
over an interval of time 7', and the * root mean square” is taken for a
large number of such flights.

When T' is small this reduces to 4/[X?] = o7, which is exactly what

we should expect when the time is so short that the correlation coefficient
¢", between the first and last small element of migration has not fallen
appreciably away from unity.
. When T is large 4/[X*] = v4/(247T), so thatthe amount of * diffusion’
18 proportional to the square root of the time. The constant A evidently
measu.res the rate at which the correlation coefficient between the direction
of an ‘mﬁnitesimal path in the migration and that of an infinitesimal path
at a time 7, 8oy, later, falls off with increasing values of 7.

We .ha,ve now seen how it is possible by introducing the idea of a
(iz;reli'tlon between the directions of the successive jumps in a random
" :::a ::n, to keep the standard deviation of the distance of migration
may by » N0 matter how small the infinitesimal paths of the migration

Th i :
e . s s . . .
migration is still a discontinuous one however. It suffers also
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from the disadvantage of depending oun a special assumption, namely, that
there is a definite correlation between the direction of motion in one in-
finitesimal element of path, and that in its immediate neighbours, but
that there iz no partial correlation between fhe directions of motion in
paths which are not neighbours. This means that there is a special law
of correlation between the directions of the paths at finite intervals of
time. The correlation coefficient between the direction of an infinitesimal
path and that of the path which occurs at a time T = nr later, is evi-
denfly ¢*. This may be written

(=)} = (L—rA) = (1—r/A)F.
When 7-is small this tends to the limit e~ 7/, 4)

We are therefore limiting ourselves to the particular type of motion
in which the direction of an infinitesimal path is correlated to that at
time T later by the correlation coefficient* ¢~7/4,

Diffusion by continuous Movements.

The work just deseribed, though not particularly useful for our present
purpose, is useful in that it gives rise to ideas about how problems of
migration or diffusion by continuous movements may be treated. In what
follows these ideas are worked out and the counditions of motion which
determine the laws of diffusion are found.

Before proceeding to discuss diffusion, however, it will be necessary to
prove a few statistical properties of continuously varying quantities,

Suppose that we wish to express the charactetistic properties of the
variations of some quantity which varies continuously, but which appears
to have no very definite law of variation. Suppose, for instance, it is
desired to define the characteristic features of a barograph record. There
are no obvious periods, nor is there any definite constant amplitude of
variation in barometric pressure, yet there are certain properties of the
curve which ean be defined. If we take the standard deviation of pressure
from its mean value during a year, it will be found to be practically con-
stant from year to year. If p represents the deviation from the mean
pressure, this standard deviation is 4/[p%], where the square bracket now
indicates that the mean value of » has been taken over a long period of

* Incidentally it will be noticed that the correlation between the direction of motion at
one instnnt and that at time ¢ earlier is also ¢~14, It is obvious that we cannot consider the
value of the expression e~ 7/4 when 7' is negative,
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time. One property of the curve which we can define, therefore, is the
constancy of 4/[ p*] during successive long periods.

The statistical properties of the barograph curve are by no means
completely determined by this. It iz possible o imagine an infinite
variety of barograph curves with a given sfandard deviation of p. They
might, for instance, have a large number of peaks in the curve during a
given interval of time or a small number. In the former case the
gtandard deviation of dp/dt might be expected to be larger than in the
latter. We can, therefore, define the curve still further by specifying
the standard deviations of dp/dt.

It appears that, from a given barograph curve, it is theorefically
possible to find the standard deviations of p, dp/dt, dp/dt?, ..., d"p/dt", ... .
Let us assumse that all these are constant from year to year.

Now suppose that we begin by specifying certain arbitrary standard
deviations for p, dp/dt, &e., and that we try to construct a possible baro-
graph curve from them. We are at once brought up against a difficulty.
Suppose that we have specified a large number for the standard deviation
of dp/dt, ¢.e. 4/[(dp/dH)?] and small numbers for 4/[p?] and &/[(@®p/dtH?].
It is evident that if we begin constructing the curve with a large value of
dp/dt at a point where p = 0, the fact that the value of 4/[(d®p/dth] is
small means that it will be a long time before dp/dt changes sign. Hence
it will be a long time before p atialns its maximumn value, and during that
time p must have attained a large value. Hence, if the standard deviation
of dp/dt is large and that of d*p/d¢* is small, the standard deviation of p
must be large. 1t is evident therefore that there must be some relation-
ships between the standard deviations and the curve of which we have not
yot taken account. We shall now see what these are.

Suppose that we observe the values pj, Py, Ps ..., P of p ab a large
number of successive times ¢, %), &, ..., L.  Suppose further that we
observe the values 2,4y, P+0py Det+6ps ...y Put-Sp,, at times
L3¢, ¢+, ty-H38E, ..., t,-HJt, where 8¢ is a small interval of time,
Then, if ¢, &, ..., ¢, ave taken at random

[(p*]= (p}+pi+...+pY[n,

and since we are considering a curve in which [p*] is constant, [p?] is
also, to the first order, equal to

I ot 2 50) + (ot L2 01) b (ot 2 00)

= [p*] +2 [p %’] at.
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It appears, therefore, that we can differentiate the quantities inside
~ square brackets which indicate a mean value.
Hence the condition that [ p*] shall be a constant is

ap _
[p% =0, (5)

There is, therefore, no correlation between p and dp/dt.
Now differentiate (5) onee motre,

2]

Hence by the definition of a correlation coefficient, there is a negative
correlation between p and d*p/dt* equal to

@7 o
i (5]

A consequence of the existence of this correlation coefficient v is evidently
that [(dp/dt)*] cannot be grenter than 4/[p*]4/[(d*p/dt})?], & statement
which agrees with the remarks above.

The way in which the correlation coefficient affects the characteristie
features of the p, ¢ curve is easily seen. Suppose it is large, i.e. nearly
equal to —1; then the curve will look something like curve (@), Fig. 1.

vy =

(a)

AN NN N

—— e m e R OME S BT EE S S R s S W e B A A -

Fia. 1.

Suppose the correlation coefficient between p and d’p/d¢® is small, but
that the standard deviations of dp/dt and d?p/d:® are the same as in curve
(@), Fig. 1, then the slopes and eurvatures will be of the same magnitude




as in curve (@), but the curvature will not always be concave to the mean
line. This is shown in eurve (d), Fig. 1.

It is evident that the standard deviation of p is greater in () than it
is in (@). This is expressed by the formula (7), for if the standard devia-
tions of dp/dt and dp/di® are fixed, then the standard deviation of p is,
according to (7), inversely proportional to ».

Since the standard deviation of dp/d?¢ has also been given as constant
it can be treated exactly in the same way as the standard deviation of p,
thus differentiating [(dp/d?)*], we have

dp ' _

dt at* ®
and differentiating this again
2 S0} ()]
dt ae (dt"‘ =0 ®
But differentiating (6) again
d’p dp d’p
p dt3]+ dt df
da
Hence, from (8), »5 ta] = 0. (10)
. - dp d%
Differentiating (10), [P dt‘]+[dt (lta:]
s tom @, [ 5H]-[ (5] =0
Hence, from (9), 7 t2> =
Proceeding in this way it can be shown that
dﬂn dn
Pg] = - Dn[(dtﬂ) ]1
(11)

d2n+l ;
and [p AT ] J

The correlations to which p and its differential coefficients must be
subject in order that their standard deviations may be constant, have now
been established. We can, therefore, now use these standard deviations
to define some statistical properties of the curve,

In analysing any actual curve, it may be very difficult and tedious to
obtain these standard deviations. There is, however, another method of
defining the statistical properties of the curve which is equivalent to that
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given above, but which is likely to be much more manageable in practice.
This method will now be considered.

. Buppose that we take, as before, the values p;, py, g, ..., Pn, of p &b a
large number of times ¢, £, %3, ..., t, chosen at random. Let us correlate
them with the values pi, pj, ..., ph, of p at times ¢,+&, &+¢, ..., tat§,
where £ is a finite interval of time which may be positive or negative.
Let the coefficient of correlation so found be B;. Then R; must evidently
be a function of &,

If p; be the value of p at time ¢, and p;4; be the value of p at time
t+ £, then by definition

(pepese] = Bew/[PIVIDL ] 5
but by hypothesis ‘the standard deviation of p does not vary, hence

[pf] = [P] = [ptse,
and Re=[pipere) 197 (12)

Now expand p;.; in powers of f,

3
pe=pte B £y

Hence

[p¢ pere] = ?]-i—f[p ]+ g? p%]+—§[ dtq] (18)

Substituting for [ p 22

oepene) = p1H£0— 5[ (D) T+ S0+ 5[ ED) ]
Hence, from (12),

[0, o (6], [GH)]

By = l_iT [ + %] — (=D o ol [pa] . (19

from (11), (18) becomes

It will be seen that, as might have been expected, B¢ is an even function
of £

As an example of the method let us take the case where it is known
that p = sin (¢-¢), where ¢ may take all possible values, all of which are
equally probable. In this case

[Pz] =4, [(dp/dt)ﬁ] =% e [(dnp/d‘tn)?] =3 ..,
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1

(14) therefore becomes

U Sl ) g ¢
B=l-gra T
This is the series for cos {. Hence R; = cos £. The correlation between
the value of p at any time and its value when ¢ is increased by any odd
multiple of 37 is 0. This is obviously true since there is no correlation
between sin (¢+¢) and sin {{+e+(@n+1)F7)} as e varies.

The correlations between p and its differential coefficients given in
(11) are evidently also frue,

Application to Diffusion by conttnuous Movements.

The theorems which have just been proved will now be used to find
out what are the essential properties of the motion of a turbulent fluid
which makes it capable of diffusing through the fluid properties such as
temperature, smoke content, colouring matter or other properties which
adhere to each particle of the fluid during its motion.

Consider a condition in which the turbulence in a fluid is uniformly
distributed so that the average conditions of every point in the fluid ave
the same. Let « be the velocity parallel to a fixed direction, which we
will call the axis of @, of the particle on which our attention is fixed. It
will now be shown that the statistical properties which were defined above
{now in relation to # instead of p) are sufficient to determine the law of
diffusion, 7.e. the law which governs the average distribution of particles
initially concentrated at one point, at any subsequent time.

Suppose that the statistical properties of % are known in the form
given above, that is to say, suppose that [%?] and R; are known. R; is
now the correlation coeflicient between the value of u for a particle at any
instant, and the value of % for the same particle after an interval of
time £.

Let w; represent the value of « at time ¢. Consider the value of the
definite integral '

5; [ ug] dE.

By the definition of B this is equal to

[ [, Becacé.
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Hence, since [4?] does not vary with ¢ and R; is an even function of f,
3 ¢
jo [weue] dé = [4] L Redé. (15)

Evidently one can integrate inside the square bragket just as one can
differentiate. Hence

5: [we) A€ = | w J': u;df] = [, X],

or, in the notation of the introduction, [«X].

Hence [u%] J: Redé = [uX] (16)
=32x7, )

T rt
and (x) = 2 | | Reagar, (18)

where X is the distance traversed by a particle in time 7',

Equation (18) is rather remarkable because it reduces the problem of
diffusion, in a simplified type of turbulent motion, to the consideration of
a single quantity, namely, the correlation coefficient between the velocity
of a particle at one instant and that at a time £ later.

Let us now consider the physical meaning of (18), when T' is =0
small that B; does not differ appreciably from 1 during the interval 7.
In this case :

[ Beagat = 3
SD JO fdf t =377,
so that (18) becomes (X*] = [="] T3,

or VX% = Ty/[W?]. 19

That is to say, the standard deviation of a particle from its initial position
is proportional to 7' when T' is small. This is what we should expect pro-
vided the time 7' is so small that the velocity does not alter appreciably
while the particle is moving over the path.

Now consider how one would anficipate that E; would vary with £ in
a turbulent fluid. The most natural assumption seems to be that E;
would fall to zero for large values of £ It might remain positive as in

e
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the curve shown in Fig. 2, or it might become negative or oscillate before

Ry

£

falling off to zero. In either case it seems probable that it will be possible
to define an interval of time 7', such that the velocity of the particle at
the end of the interval T; has no correlation with the velocity at the

Fia. 2.

[
beginning. In this case suppose that lim g R df is finite and equal
t—>w JO .
to I.  Then at time 7' (> T)) after the beginning of the motion

L= 21,

so that [X”] increases at a uniform rate. In the limit when [X?] is large
VX = V@IT[)), (20)

80 that the standard deviation of X is proportional to the square root of
the time.

This, therefore, is a property which a continuous eddying motion may
be expected to have which is exactly analogous to the properties of dis-
continuous random migration in one dimension,

It will be noticed that when 7 > T,

[Xu] = [«*]1. (21)

Hence [ Xu] is constant in spite of the fact that [X*] continually in-
creases. In order that this may be the case X must always be positively
correlated with 2, but the correlation coefficient must decrease with in-
creasing [X*]. It vy, represents the correlation coeflicient between X and u

o = — {Xa] =L\/['I.l,2]
= VX T VX

and in the limit when 7 — @,

I/ y
o= o) T \/21' (22)
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It is interesting to compare the expression (18) for [X?] with the ex-
pression given in (8) for the standard deviation of X in the special case
of -digeontinuons motion considered thare.
In that case E; was shown in (4) to be ¢~¥/4, In the conbinuous case
if we write B; = ¢~ (21) becomes
T
0

[XY) = 2] j j: oA dgat

T
=9 [u”]j A —e 4hHdt
0
= 2[u?] {AT— A% —e T4} (28)
In the discontinuous case it was shown in (8) that
VX = 04/ {24T—24%(1 — e~ T4},

It is evident that this is exactly the same as (28) except that s/[«?] hag
been substituted for the constant » which occurred in the discontinuous
case.

If as a result of experiments on diffusion, it were possible to obtain a
curve representing [ X?] as a funection of T, it would be possible to use
(18) as a means of discovering something about the nature of the turbu-
lence, for (18) could be written

& 1x) = sl R,

and B could therefore be found.

‘In a recent communication to the Royal Society,* Mr. L. F. Richardson
has described some experiments on the diffusion of smoke emitted from a
fixed point in & wind. Similar observations have been made on the smoke
from factory chimneys by Mr. Gordon Dobson.t Both these observers
came to the conclusion that, at small distances from the orvigin of the
smoke, the surface containing the standard deviations of the smoke from
& horizontal straight line to leeward of the source, is a cone. If the mean
velocity of the wind is assumed to be uniform, the standard deviation in
a short interval of time is therefore proportional to the time. At greater
distances their observations indicate that this surface becomes like a
paraboloid, so that the deviation of the smoke is proportional to the
square root of the time.

* Phil. Trans., A, Vol. 221, p. 1.
t Advisory Committee for Aeronautics (Reports, 1919).

SER. 2. vorL. 20. N0, 1390. P
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Both these observational data are in agreement with equations (19)
and (20).

Mr. Richardson’s method consisted in taking a photograph of the
smoke leaving a source and drifting down-wind. The exposure was nof
instantaneous, but extended over such a long period that a kind of compo-
gite photogragh was obtained showing the outer limits of the region con-
taining the smoke. The general shape of the outline of this region.is
ghown in Figs. 4 and 5; it is, as has been explained, a parabola with a
pointed vertex. In some cases the paraboloidal part of the surface joined
straight on to the conical part, as shown in Fig. 4, but in other cases
there was a sori of neck between them as shown in Fig. 5. According to
the theory set forth above this neck wonld be anticipated in cases where
the B, curve contained negative values as shown in Fig. 8. An R curve
of this type might be due to some sort of regularity in the eddies of which
the turbulent motion eonsists.

===~ - SMOKE— - e —— _

CHIMNEY

Fia, 5,
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It appears that both theory and observation indieate that [Xu] be-
conies constant after o certain interval of time (which depends of course

¢
on the value of £ at which j R:d¢ becomes practically constant with in-
0

crensing values of £). 'This is a matter of considerable interest in the
theory of the conduction of heat by means of turbulence, because it indi-
cutes a reason why the *diffusing power” of any type of turbulence
appears to depend so little on the molecular conductivity and viscosity of
the fluid.

‘After writing this paper I showed it to Mr. Richardson, who informed
me that he had already noticed the relations (11), and at my request he
gent me his proof which follows.

Note on a Theorem by Mr. G. 1. Taylor on Curves which Oscillate
’ Irregularly

By Lewis F, RicuarpsoN.

The theorem referred to is proved on the hypothesis that the standard
deviations of p, dp/dt, d’p/dt?, ..., d*p/dt* ave constant over any long
time. It also follows, as will now be shown, from the rather different
hypotheses which may be stated thus:—

(i) No one of p, dp/dt, d®p/d¢* has a standard deviation less than a
certain lower limit. )

(ii) The instantaneous values (¢ being time) of p, dp/dt, d*pldt, ...,
never exceed in numerical value a certain upper limit, (2)

‘We might state simple numerical upper and lower limits, But as we
are dealing with oscillations, it will be as well to take a hint from the
properties of the sine curve. If p = c¢sinsp, then |d"p/dt"| is notb
greater than cs*, and the standard deviation of d"p/d¢* is 4/% cs™

For our irregular curve let us define B and »r and 4 so that |p| <B

and |d"p/dt| < B, (8)

The standard deviation of p is greater than 4 and that of d"p/deé* is

greater than A4»" (4)
It is required to find

1 (= d&p .

Q~QLPMWM' )
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Integrate by parts, successively, so as to differentiate the p and to in-
tegrate d”p/d¢™ until they both coincide in d"p/d¢*, For example, when
# = 5, the result ig

1 ta dl
t~t1j P g o dt

— _ pdp _dp &p | dp d% _5__]
= J,[ P73 p+dt8 it Tdt af Tal a T arf af

_tl

1 t, dﬁp 2
T4 j,‘ (W) . ©

The expression in square brackets is less than 5B%® however long the

5,

s 2
interval (f,—¢;) may be, while J (_d_g) dt is greater than (¢,—t;) 4%,
4

ag
and so increases with the interval,
Thus when (t,—1,) is large enougl, the term in square brackets be-
comes negligible. Generalizing the example, and taking account of the
changes of sign introduced by partial integration,

12‘ d')"j) (—1)" E/g <f_['_'])>2
L P o=t ) \ar dt. (1)

lim

b—t,—>» t2— tl

If in place of d®'p/dt*™ in (5) we had had o coefficient of odd order, the

partial integrations, when pursued so as to lead back again to the original

form, would have produced an arrangement of signs such that like terms
were added. So that

ty 2u+1,
lim jpd P gt = . (8)

limty—>o tz__tl “ dt‘lu+1

This depends on the hypothes1s (2) only. Hypothesis (1) does uot come
in here, It was needed in proving (7).




Statistical Theory of Turbulence
By G. L. TayLor; F.R.S.
(Received July 4, 1935)

INTRODUCTION AND SUMMARY OF PaRTS I-IV

Since the time of Osborne Reynolds it has been known that turbulence
produces virtual mean stresses which are proportional to the coefficient
of correlation between the components of turbulent velocity at a fixed
point in two perpendicular directions. The significance of correlation
between the velocity of a particle at one time and that of the same particle
at a later time, or between simultaneous velocities at two fixed points
was discussed in 1921 by the present writer in a theory of ““ Diffusion by
Continuous Movements.” The recent improvements in the technique
of measuring turbulence have made it possible actually to measure some
of the quantities envisaged in the theory and thus to verify some of the
relationships then put forward.

The theory has also been developed in several directions which were
not originally contemplated. The theory, as originally put forward,
provided a method for defining the scale of turbulence when the motion
is defined in the Lagrangian manner, and showed how this scale is related
to diffusion. It is now shown that it can be applied either to the
Lagrangian or to the Eulerian conceptions of fluid flow.

Where turbulence is produced in an air stream with a definite scale by
means of a honeycomb or regular screen, either conception can be used
to define a length which is related to certain measurable properties of
flow and is a definite fraction of the mesh-length, M, of the turbulence-
producing screen. _

The Lagrangian conception leads to a length /;, which is analogous to
the ¢ Mischungsweg” of Prandtl. Experiments on diffusion behind
screens, Part IV, show that /; = 0-1 M. The Eulerian conception leads
to a definite length /, which might be regarded as the average size of an
eddy., Correlation measurements with a hot wire, Part II, show that
I, is about equal to 0-2 M.

The theory applied in the Eulerian manner to these correlation measure-
ments also contains implicitly a definition of A, *‘ the average size of the
smallest eddies,” which are responsible for the dissipation of energy by
viscosity. '

18



It is proved that
W= 15u (74‘2/)‘2’)’

where %2 is the mean square variation in one component of velocity and
W is the rate of dissipation of energy. This relationship is verified experi-
mentally (Part II).

The relationship between A and M is discussed and it is predicted that
turbulence in an air stream moving with velocity U will die down so that

U x

provided that the scale of turbulence is determined by the mesh-length M
where A is a universal constant and B depends on the choice of the
origin taken for x (the down-stream co-ordinate); u is a component of
turbulent velocity. This theoretical relationship is compared with results
of experiments carried out in wind tunnels in England and in America.

The theory is applied in Part III, to determine the distribution of
dissipation across the section of a parallel wall channel (two-dimensional
pipe) and it is shown that in the region near the walls turbulent energy is
produced more rapidly than it is dissipated. In the central region the
reverse is the case.

In Part IV the results of diffusion experiments made in America and at
the National Physical Laboratory are discussed and it is shown that a
complete set of such measurements can give v % I, and a length A,
which may be regarded as a measure of the * smallest size of eddy ” in
the Lagrangian system. X, is connected, through the Lagrangian equations
of motion, with the average spatial rate of change in pressure, namely

a 2
V(2
by the formula __
op 2 g
\/ <a—y,\ =v2p5

Finally it is shown that the theory leads to the prediction that A, is a
constant multiple of A. The only set of experiments which exists at
Present gives A, = 2\ approximately.

All the above results are subject to the restriction that the “ Reynolds
Number of Turbulence,” namely / Vv u?/v, is greater than some number
which must be determined by experiment.
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PArT I

At an early stage in the development of the theory of turbulence the
idea arose that turbulent motion consists of eddies of more or less definite
range of sizes. This conception combined with the already existing
ideas of the Kinetic Theory of Gases led Prandtl and me independently
to introduce the length / which is often called a * Mischungsweg ” and is
analogous-to the *“ mean free path ” of the Kinetic Theory. The length
!/ could only be defined in relation to the definite but quite erroneous
conception that lumps of air behave like molecules of a gas, preserving
their identity till some definite point in their path, when they mix with
their surroundings and attain the same velocity and other properties as
the mean value of the corresponding property in the neighbourhood.
Such a conception must evidently be regarded as a very rough repre-
sentation of the true state of affairs. If we consider a number of particles
or small volumes of fluid starting from some definite level and carrying,
say, heat in a direction transverse to the mean stream lines, their average
distance from the level at which they started will go on increasing
indefinitely so that we can only consider a * Mischungsweg > in relation
to some arbitrary time of flight during which we must consider that the
particles preserve their individual properties distinct from those of their
surroundings. Clearly this is an arbitrary conception and if pursued
logically probably leads to a definitely wrong result. The only way in
which a small volume can lose its heat is by conductivity to its surround-
ings. A decrease in molecular conductivity would therefore lead to an
increasing time during which the small volume would retain its heat
distinct from its surroundings and consequently a decrease in con-
ductivity would necessarily lead to an increase in the *“ Mischungsweg.”
In all theories which make use of / it is assumed that / depends only on
the dynamical conditions of the fluid and is nearly independent of such
physical constants as thermal conductivity.

In all applications of ‘‘ Mischungsweg > theories the length / is con-
sidered only in relation to further, more or less arbitrary, assumptions
concerning the effect of turbulence on the mean motion or of the mean
motion on turbulence. It appears as a fictitious length, the existence
of which is detected only by observations of the distribution of mean
velocity, temperature, etc.

The difficulty of defining a “ Mischungsweg,” or scale of turbulence,
without recourse to some definite hypothetical physical process which
bears no relation to reality does not arise in such applications. The

2
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difficulty, however, still exists and it led me, some years ago, to introduce
the-idea* that the scale of turbulence and its statistical properties in
general can be given an exact interpretation by considering the correlation
between the velocities at various points of the field at one instant of time
or between the velocity of a particle at one instant of time and that of
the same particle at some definite time, &, later. Some general relations
applicable to either of these two aspects of the turbulent field were dis-
cussed, and the application of the definitions used in the second of them
to diffusion in one dimension was worked out in detail. In this applica-
tion of the theory the particles are conceived to move irregularly but
with continuous velocity, v and 2 is supposed to be independent of time.
The diffusion of particles starting from a point (y = 0) is shown to
depend on the correlation R; between the velocity of a particle at any
instant and that of the same particle after an interval of time £. In
continuous turbulent movements R, must be a function of £ such that
R; = 1 when £ = 0 and R; -~ 0 when £ is large.

If Y? is the mean square of the distance through which the particles
have diffused in time ¢ it was proved that

%%(YT)=YT:3§£RM& (1

If the time of diffusion is small so that R, has not departed appreciably
from its initial value 1-0, (1) becomes

34078 =
so that
B VYE =01, 2
where v' = /2.
If the diffusion is taking place in a stream of air moving with velocity
U and if the spread is observed at a small distance x down-stream from
the source ¢t = x/U so that
: VYE _
X

3

I =

If the irregular motion is of such a character that it is possible to define
a time T such that R; = O for all values of £ greater than T, so that there
18 no correlation between the velocities of a particle at the beginning
and end of the time interval T, then

— rT
Yo =7t \0 R, @)

* ¢ Proc. Lond. Math. Soc.,” vol. 20, p. 196 (1921).
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Yv is therefore constant for all values of 7 > T in spite of the fact that the
value of Y? is continually increasing and ¢* is constant.
Under these circumstances it is possible to define a length 7, such that

= (T d
I]_ '\/02 = 02 jo Re de = ‘i‘ 3; (Yé). (5)
It will be seen from (5) that the length /,, defined as
— T
Lh=VE| Rd, ©)

bears the same relationship to diffusion by turbulent motion that the
mean free path does to molecular diffusion. In this sense it is very
similar to the “ Mischungsweg,” /, but with this important difference
that the question of mixture does not arise in defining it.

As is pointed out above, theories which depend essentially on the idea
of mixture by subdivision and ultimate molecular diffusion lead to the
expectation that the “ Mischungsweg ”* will depend very greatly on the
molecular diffusive power of the fluid. In the theory of diffusion by
continuous movements the length /, bears no relation to any process of
mixture, indeed it is equally valid if mixture never takes place. The
effect of molecular diffusion would be to prevent the fluid from becoming
ever increasingly ‘‘spotty,” i.e., it would tend to prevent a continual
increase in the deviations of the measurable properties of the fluid from
their mean value in the neighbourhood. Mixture has no effect in this
theory on the diffusive power of turbulent motion.

CORRELATION IN THE TURBULENT FIELD WHEN DESCRIBED IN THE
EULERIAN MANNER

In a loose way it has been thought that the ““ Mischungsweg ” length
1 is related to, and even may be taken as a measure of the average size
of the larger eddies in turbulent flow. It will be noticed that in the
original * Mischungsweg » theories, and also in the theory of diffusion
by continuous movements, everything is defined in a Lagrangian manner,
i.e., by following the paths of particles. When a field of eddying flow is
considered as an entity in itself, apart from its effect as a diffusive agent,
it is more usual to think in terms of the Eulerian conception of fluid flow,
i.e., a field of stream lines conceived to exist in space at one instant of
time. Any ideas we may have about * the size of an eddy ” are likely
to be formulated in the Eulerian- system. For this reason it would not

VOL. CL1.—A, 7w
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be possible to connect directly the size of an eddy, even if it could be
accurately defined, with the value of ! or of /; as defined by (6) in the
Lagrangian system, At the same time it seems to be a matter of
considerable theoretical interest to investigate the statistical properties
of a field of turbulent flow when described in the Eulerian manner, with
a view to defining a length which may represent in some definite way the
“ size of an eddy.”

The correlation theory developed in my paper, * Diffusion by Con-
tinuous Movements,” is equally applicable in this case and may be used
to formulate another definition of the scale of turbulence. It is clear
that whatever we may mean by the diameter of an eddy a high degree of
correlation must exist between the velocities at two points which are close
together when compared with this diameter. On the other hand, the
correlation is likely to be small between the velocity at two points
situated many eddy diameters apart. If, therefore, we imagine that the
correlation R, between the values of u at two points distant y apart in
the direction of the y co-ordinate has been determined for various values
of y we may plot a curve of R, against y, and this curve will represent,
from the statistical point of view, the distribution of u along the y axis.
If R, falls to zero at, say, y = Y, then a length /, can be defined such that

I, ~ J: R, dy — j:R,, @. 7

This length /, may be regarded as the analogue in the Eulerian system
of I, which is defined in the Lagrangian system. It may be taken as a
possible definition of the * average size of the eddies.”

EXPERIMENTAL METHODS FOR MEASURING /; AND [,

The compensated hot wire is capable of being used to measure several
of the quantities which are necessarily considered in any statistical theory
of turbulence.

(1) #® can be measured by means of a hot wire anemometer. If the
amplified disturbances are passed through a wire the heat produced can
give rise to a current in a thermojunction, which will cause a deflection
in a galvanometer proportional to 2

(2) If two hot wires are set up at a distance y apart transverse to a
Stream of air and the currents produced by variations in u at the two
points are sent through the two coils of an electric dynamometer, the
resulting deflection will be proportional to u.u, where u, and u, are the
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velocities at the two points. In this way R, = ugu,/4? can be measured.
By repeating these measurements for a number of different distances of
separation y between the two hot wires, R, can be determined for all
values of y and hence by integration /, can be found. The (R,, y) curve
has already been obtained in certain cases by Messrs. Simmons and
Salter at the National Physical Laboratory by this method (see fig. 1
of Part II).

Another method is to arrange two equal hot wires on two arms of a
Wheatstone bridge thus measuring (4, — ug)®. If u,® and u® are
measured independently at the two stations, s, can be found from the
relationship

ug + ¥ — (g — up)® = 2uguy. ®

Yet another method due to Prandtl* is to pass the currents from the
two hot wires through coils which cause deflections of a spot of light
in two directions at right angles to one another. If the two hot wires
are identical and so close together that the correlation is nearly 1-0, the
spot of light moves over a very elongated elliptic area, the long axis of
which is at 45° to the deflections caused by either of the wires in the
absence of disturbances from the other. By measuring the ratio of the
principal axes of the elliptical blackened areas produced on a photo-
graphic plate by the moving spot of light during a prolonged exposure,
it is possible to calculate R,. This method is specially suitable for
measurements when the correlation is very high, ie., 1 — R, is small
It is not so suitable for small correlations as the electric dynamometer
method. Correlation measurements made in this way are shown in
fig. 1 of Part III of this paper.

(3) By introducing heat at a concentrated source or a line source in an
air stream and measuring the spreading of the heat to leeward of the

source it should be possible to measure the quantity c_i‘!t_ ¥? which occurs

in (1) and hence to find J-t R, d; for various values of ¢. If this reaches
0

a constant value at some distance down-stream then /; can be found.
This method was suggested in my paper on ‘“Diffusion by Continuous
Movements.” Up to the present, however, the theory has only been
applied to cases like that of diffusion in the atmospheref where there is
no g priori reason to suppose that any definite scale of turbulence can be

* Prandt! and Reichardt, ‘* Einfluss von Wirmeschichtung auf die Eigenschaften
einer Turbulenter Stromung.” Deutsche Forschung, p. 110 (1934).
t Sutton, ¢ Proc. Roy. Soc.,” A, vol. 135, p. 143 (1932).
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defined. Indeed, Mr. O. G. Sutton has shown that the best representation
of diffusion in the air near the ground is obtained by assuming R; o< &7

¢
so that R, does not vanish however great £ may be. In fact j R, d;
¢

increased continuously with increase in f so that /;, defined as in equation
(6), would have no definite value.

The turbulence which occurs in wind tunnels is produced or controlled
by a honeycomb with cells of a definite size. Ina wind tunnel, therefore,
there is an a priori reason why the turbulence might be expected to be of
some -definite scale. In fact, it might be expected that both /; and /,
would be some definite fraction of the mesh of the cells. Under these
circumstances the diffusion equations (1) and (6) reduce to

5% e — . )

This expression is valid when the distance x of the points at which measure-
ments of Y? are made from the point or line source of diffusion is so
great that R; = 0 where § = x/U and U is the mean speed of the air

stream.

APPLICATION OF DIFFUSION EQUATION WHEN TURBULENCE IS
DECAYING

In the air stream behind a grid or honeycomb the turbulence is not
constant, It decreases as the distance down-stream increases. The
preceding theory cannot then be applied without further investigation.

If ¥ is considered as a function of ¢ the diffusion equation is

bV = 0| v (10)

t . < 7o .
for Y = J v, ¢ d§ and ;; (Y?) is the rate of increase in Y? at time ¢ after
0

the beginning of the diffusion from a concentrated source.
If R,_; is the coefficient of correlation between the velocity at time

? and that at time ¢t — §, (10) may be written
d'_" ' t !
PV =0 Ve (R (11)
where o', v/,_; are written for Vo, V&,_.

When the average condition of the turbulent motion is constant with
respect to time ,R,_; is the same as ;R,,; or R; and is a function of §
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only, so that (11) is identical with (1). When v’ is not constant, it is not
possible to proceed beyond (11), but the existing experimental evidence
seems to show that turbulent diffusion is proportional to the speed, so
that if matter from a concentrated source is diffused over an area down-
stream from the source, anincrease in the speed of the whole system (i.e.,
proportional increases in turbulent and mean speed) leaves the dis-
tribution of matter in space unchanged (though the absolute concentration
is reduced). The condition that this may be so is that ,R,_, is a function

of 4 only where
dn=v'df = (v'/U)dx (12)

and x = Ut is the distance down-stream from the source.
The equation which represents the lateral spread of matter or heat
from a concentrated source is therefore

Ud — e
3o () = jo R, du, (13)

where = j "2 dx, | (14)
0
and R, is the correlation between the velocities of a particle at times ¢,

and 7, when o = ( b v"dt. If R, falls to zero at a finite value of v, say
St

1 = 7, and remains zero for all greater values of 7, jq R, dv is finite.
0

If [, be written for j " R,dv then (11) becomes
0
vd
v dx (
This is the same expression as that found for turbulence which is not

decaying.*
It is worth noticing that (13) may be expressed in the form

d — K
b (W= ["Rydn, (16)

Y3 =1, (15)

When 7%, is small so that R, =1 over the range from 0 to x, (16)
becomes

b (= Can
The integral of (17) is _
Y= or VY2=1. (18)
* See equations (1) and (6).
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When the turbulence is constant 4 = xv'/U so that (18) reduces to the
previous expression (3) for the spread of matter near a concentrated
source. If the turbulence is not constant and if Y2 and v’ /U are measured

Ud —
at a number of values of x, then both 4 and } 5 % (Y?) can be found.

Thus J ’ R, dv can be plotted again‘st. n and R, can be found graphically
(1}

from this experimental curve.

MICRO-TURBULENCE AND DISSIPATION OF ENERGY

Besides the motions which are chiefly responsible for the diffusive
power of turbulence the whole field may be in a state of micro-turbulence,
i.e., there may exist very small-scale eddies which, though they play a
very small part in diffusion, yet may be the principal agents in the dissipa-
tion of energy. They may also be the principal causes of the effects of
turbulence on the boundary layer in wind tunnel work because the
absolute magnitude of the space rates of change in pressure may depend
on them,

DISSIPATION OF ENERGY

The rate of dissipation of energy in a fluid at any instant depends only
on the viscosity, p, and on the instantaneous distribution of velocity.
If, therefore, the representation of the essential statistical properties of
the velocity field can be expressed by the R, curve and similar correlation
curves it must be possible to deduce from them the rate of dissipation of
energy. This would in general involve a complicated analysis, but the
problem can be much simplified if the field of turbulent flow is assumed
to be isotropic.

IsoTtroPIC TURBULENCE

In isotropic turbulence the average value of any function of the velocity
components, defined in relation to a given set of axes, is unaltered if the
axes of reference are rotated in any manner. That there is a strong
tendency to isotropy in turbulent motion has long been known. It has
been shown by Fage and Townend, * for instance, that the average values
of the three components of velocity in the central region of a pipe of
Square section are nearly equal to one another. In the atmosphere the
same phenomenon has been observed ; though, as might be expected, the

* Townend, * Proc. Roy. Soc.,” A, vol. 145 (1934) (see fig. 15, p. 203).
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vertical components are smaller near the ground than the horizontal
ones, this inequality decreases with height above the ground.*

The assumption of isotropy immediately introduces many simpli-
fications both into the statistical representation of turbulence and into
the expression for the mean rate of dissipation of energy.

The general expression for. the rate of dissipation is

1 Op\# ow? ov |, ou
= a3 +2(2 5+ 25 (Gt )
“ow |, ov\? 8u
ﬂ‘a}*za—z)*(az )} 19)
Making the assumption that the turbulence is statistically isotropic, the
relations -
Ul jO0E [ Ow?
(&) =(5) = (%)
and .
ou [Ou? ovi® _ (0v®E owit _ ow? L
(5 =l =G =@ == }
and
Bou_ woo_ dutw
0xdy OJyoz 0z0x

are immediately obtained so that

‘-’—:= () 162 >+6gig; Q1)
Equation (21) contains three types of term. It will now be shown that
these are all related to one another so that if the value of one is known
the other two are known.

That relationships can be found between the mean values of squares
and products of ou/dx, ou/dy, ov/ox, .., etc., is obvious. The simplest
relationship is obtained as follows. The condition of continuity is

+ + aw —0,
so that , - - 5
{ Ou\2 p\? w du dv vow . owou
(5) + <5}> + (52) -2(55 »  yaTan s

The conditions of statistical isotropy therefore lead to the relationship

oul 5 0udv
(—a—;c/)~ 255; (23)

* Taylor, ‘ Q. J. R. Met. Soc.,” vol, 53, p. 210 (1927).
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or ___
ou ov
:'815} —_—=—1 (24)
VE VG

In other words there is a definite correlation coefficient between du/dx
and 9v/oy equal to — 4.

MEAN VALUE OF GENERAL QUADRATIC FUNCTION OF &u/dx, ov/ox,
ou/oy, ..., ETC,

Consider the most general possible expression for the mean value of
any quadratic function of the nine quantities

o o v B ow D B w
ox’ dx’ 9x’ 9y’ oy’ dy’ 9z’ 90z 9z’
In general there are 36 possible combinations of 9 things taken 2 at
a time. Thus the most general quadratic expression contains 45 terms,
namely the 9 squares of the quantities concerned and the 36 combinations
of 2,
When the motion is statistically istotropic the 45 terms fall into 10
groups, each of which contains 3 or 6 means which are equal to one
another; for example, one group containing 3 equal terms consists of

(&l 5w (G

Another containing 6 equal terms consists of

oudv Oduow oOvou Ovow Owou Owov
Dz’ xdy oz Gy zdy dzox

The 10 possible independent mean values will be denoted by a;, a,,
<y @19 according to the scheme laid out in Table T where the top row of
the table gives the type term and all other terms of the same type can be
obtained by permuting symmetrically the elements of the type term.

The symbol which represents the mean value of any term of a type is
given in the second row and the number of independent terms in each
group is given in the last row.

In terms of these symbols (21) becomes

W/p = 6a; + 6a; + 6aq. (25)
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1 now propose to prove that the 10 values, ay, ay, ... @y, are inter-
connected, so that if the value of any.one of them, which is not zero, is
known all the rest are known. For this purpose it is necessary to prove
9 linear relationships. One such relationship has already been proved
(see equation (23)). Expressed in the symbols of Table I (23) may be
written

a, = — 2a;. (26)

Further relationships may be obtained as follows. Take any one of
the 45 possible terms in the most general quadratic expression involving
the 9 partial differentials of (25). Transform u, v, w, X, y, z, by rotation of
the axes to ', v', w, x', ', z’. The transformed expression will still be
quadratic but will contain terms of other types than the original one.
When the mean values of the terms in the transformed expression are
considered it is a necessary consequence of the definition of isotropy that
the value of each is equal to that of the type term in the group in which
they are classed. A simple transformation is obtained by rotating the
axes through 45° about the axis of z so that

V2= x4y, VIu= u—l—vl
V2y'=—x+y} V2vU=—u+v 27
=z w= w )
Hence '
3u /o' o' ow | v\ | du__ ,jou o’ 8v'>
(ax’ w e | 5ot +ay 97
_ 81)'»_ ouw 81”) ov_ 4 {ow
‘}( Tz A a—y“%<xl+ ,+ +
@*L@_w o) lwzi<ﬂ+al>
ox 42\ox" 9y dy 4/2\0x" 0y
1oy
0z «\/7'\8"' a_Zl
ov 1 fou | ov"
—8;_\72<az +az/) (28)
v _ow
0z o7

Take, for example, <

-9

ou\? .
?}%) = @;. By squaring the transformed expression
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for (%>, taking the mean value and substituting the symbol for the

corresponding type term from Table I it will be found that

(5 == {5+ (G + - o)

. =% +tas—a;—a, + ag+ a;— a, — a;). (29)
Similarly

TASNG
(g_ll)))=a1:%_'(01+a3+05+a2+ae+as+a2+af’)’ (30)

/

1 Apg 2
(ﬂl)=a3:%(01+aa_a5+a2—aﬁ_‘as+a2_a5)’ (31)

TO0E
<36_5vc>Zaaz%(al+a3+a5“az"‘ae*aa—aa+aﬁ). 32)

From these equations it will be found that

. a2 — a5 - O ’ (33)
and
a —as —a, — ag = C. (34

No further relations can be derived by transforming the type terms corre-
sponding with a,, a;, a, or a,. Proceeding to terms involving w or z

ou oo ou'\: /ov\2
EE ot - %) -temm=0 0
ou o
_3%3_12):09 2\/2(a2—-a9+a4—a7—{a,—a4+09—a2)—0 (36)
ou ¢
a-—.:-é% — a7 == ’\/..(az -— a; + a7 + a7 - a4 - ag + aﬁ)' (37)
hence since )

Gr=a=0  a(/3—1)+as=0 (38)

1
—@-—a-é:a,;:m(aa—ag%-th—a.,-a7—{-~a4—ag+aa),
and hence

a,(V2—1)-+a,=0 (39)
combining (38) with (39)
a,=a,=0. 40

Summing up the results so far obtained 6 of the 10 independent types
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of mean are zero, namely, a,, a4, a; ,a,, Gy, a;, and there are two inde-
pendent relationships between the remaining 4 means, namely, -

a=—2a, and a, —az—a;—ag= 0.

Of these the first depends on incompressibility and isotropy. The
second depends only on isotropy.

One further relationship can be obtained by volume integration of the
general dissipation expression (19). This integration is well known*:
it is

ou\? ov\2 ow\? ow |, o\
JI[5 ooy o = [ {2(32) +2(5) +2(5) + (5 + %)

wi | o | ou\?
_x) -{-(\—a}—k—a}‘) }dxdydz

:J”(gf + 2+ O dxdydz — ”;’—1(42)ds —I—Z“

v

ds, (41)

I man
u v w
E n ¢

where
£ = (dw/dy) — (2v/02), etc.

and the integrals are taken over the cloud surface S and through its
volume. If the closed surface is large compared with the scale of the
turbulence the surface integrals are small compared with the volume
integrals which may therefore be neglected. Taking the mean value of
all the quantities in (41) and expressing the result for isotropic turbulence
in terms of the symbols of Table I, (41) becomes

W/p = 6a, + 6a; + 6a, = 6a; — 6a,. (42)
Hence
a; + 2a, = 0, 43)
solving (26), (34), and (43) it will be seen that _
a, = Yay = — 2ay = — 2a,. (44)

Three obvious corollaries to this result may be noticed :

(1) The correlation coefficient between du/ ox and dv/dy is — %.

(2) The correlation coefficient between du/dy and ov/ox is — .

(3) When the mean value of any one of the four possible types of
quadratic terms which are not zero is known all the rest are known, so
that the mean value of any quadratic function of the space rates of change

* See, for instance, the chapter on viscosity in Lamb’s * Hydrodynamics.”
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of velocity is also known. In particular the dissipation may be expressed

VIR
in terms of <%l—l) - The correct expression is

Y/

_ N2
W/u = 6ay + 6ay +- 6a, = 3as + 6a, — 1-5a3=7-5<g—‘y‘). 45)

STATISTICAL REPRESENTATION OF MICROTURBULENCE

The value of (%ﬁf is clearly related to the way in which the value of

R, falls off from its initial value 10 as p increases from zero. I have
proved,* in fact, that

ul 1 p4 /022
— — (=) — ... 46
<3y/ + B@(Byz) - 48

2
The curvature of the R, curve at y = 0 is therefore a measure of <—g;—t>
so that

F-ruisd). @

The significance of the expression (47) can best be appreciated by
defining a length A such that

1 L /1 — R”>’ (48)

AE S0 Ve

A% is then a measure of the radius of curvature of the R, curve at y = 0,
If the curve is drawn on such a scale that its height is H (corresponding
with R, = 1 at y = 0) the radius of curvature at y = 0 is A2/2H.

Another interpretation of A may be found by describing the parabola
which touches the R, curve at the origin. This parabola will cut the
axis R, = 0 at the point y = A, A may roughly be regarded as a measure
of the diameters of the smallest eddies which are responsible for the
dissipation of energy.

CONNECTION BETWEEN DISSIPATION OF ENERGY AND CORRELATION
~ FuNcTION R,

Combining (45) with (47) and (48), the dissipation is related to the
correlation function R, by the equation

W — 15 i Lt 1 ;zRv (49)
v

* ¢ Proc. Lond. Math. Soc.,” vol. 20, p. 205, equation (14), (1921).




or .
W = 15p22/22, (50)

Since #? and R, can be measured directly by means of the hot wire
technique referred to earlier, the relationship (49) can be verified if
W can be measured by other means. The way in which this can be
done and the comparison between this statistical theory and the results
of observation will be discussed later. In the meantime it may be noticed
that if the Reynolds’s stresses in geometrically similar fields of flow are
proportional to #® or «%, W is proportional to «3, so that A is proportional
to (u')7%, and since A is proportional to the curvature of the R, curve at
y = 0 we are led to the prediction that the curvature of the R, curve at
its summit, y = 0, will be proportional to 1/u’. 1In the limit for very high
values of #' the R, curve may be expected to have a pointed top.

SUGGESTION FOR EXPERIMENTAL TEST IN WIND TUNNEL OF
PREDICTED CORRELATION RELATIONS

It has been shown how measurements of correlation between the
readings of two hot wires at points close together in a transverse section

of a pipe or wind tunnel can give the value of ( %‘T . If similar measure-

ments could be made in a line parallel to the main stream, values of
(&

e could be obtained in the same way. Equation (44) shows that

ou\? / Ou\2
= (B -1emi(f
and referring to equation (47) which is equally true when x is substituted
for y, it will be seen that for the correlation to fall a given amount from
its coincidence value 1-0 the separation of the two hot wires must be 4/2
times as great when one lies up- or down-stream from the other as it is
when they lie across the stream.

This is a definite new theoretical prediction which could be tested.
If difficulty is found in working with one hot wire down-stream from the
other, measurements might be made with’the two wires mounted at a
fixed distance r apart on a rotating holder, and the variation in the
correlation R as the holder is rotated might be found.

The correlation between the values of u observed at two points situated

at a short distance, r, apart in a line making an angle 0 to the wind direction
is* —_— ’

R=1— %(%)2 (51)

¥ Compare equation (47).
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where x' = x cos 8 4 ysin 0. Since

u
ox’

ou

_ ou |, .
= COS$ Oa—x—i—sm 65};

(51) becomes, in the notation of Table I,
’ 2
R=1— '2%71 (ay cos? O -+ ay sin? 6 4 2a,cos Osin 0).  (52)

When the turbulence is isotropic this is

2 7oud
1—-R= 2r2<ay) (cos? 6 4 % sin® 0),

hence from the definitionf of A
1 —-R= 5 (cos2 0 + 4 sin? 0). (53)

It appears, therefore, that 1 — R should vary in the ratio 2: 1 as the
holder is rotated for the maximum to the position to maximum to
minimum correlation.

DIMENSIONAL RELATIONSHIP BETWEEN A AND SCALE OF TURBULENCE

It has been shown by v. Karman that if the surface stress in a pipe is
expressed in the form = = pv,? then

S=2 (k) e

where U, is the maximum velocxty in the middle of the pipe and U is the
velocity at radius r. This relationship is associated with the conception
that the Reynolds’s stresses are proportional to the squares of the turbulent
components of velocity. It seems that the rate of dissipation of energy
in such a system must be proportional, so far as changes in linear dimen-
sions, velocity, and density are concerned, to pu'3/l, where / is some linear
dimension defining the scale of the system. For turbulence produced
by geometrically similar boundaries therefore

L} 2
W = constant (9_1;_> =15 -‘%
For such systems therefore '
L v
E= C I (55)

t See equation (48).
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where C depends on the position relative to the solid boundaries of the
point at which observations are made and on the element used for defining /.

APPLICATION TO AIR STREAM BEHIND REGULAR GRIDS OR
HoNEYCOMBS

Formula (55) is specially well adapted for discussing the decay of
turbulence in an air stream behind a grid or honeycomb, because it has
been found that at a certain distance down-stream the stream becomes
statistically uniform, i.e., the “ wind shadow > of the grid disappears
and the mean velocity becomes uniform. Under these circumstances it
seems that the C of formula (55) must be a constant for any definite
form of grid. 'The researches of Schlichting* have shown that at a short
distance behind a cylindrical obstacle the wake assumes a definite form.
The width of the wake and the velocity of the air in the middle of the
wake depend on the drag coeflicient of the obstacle so that obstacles
of very varied cross-sections produce identical wakes provided their drag
coefficients are identical. For this reason it may be expected that if a
regular grid or honeycomb is constructed the scale of the turbulent motion
produced by it at any distance down-stream beyond the point where the
“ wind-shadow ”* has disappeared will depend only on the form and mesh
size of the grid, and not on the cross-section of the bars or sheets from
which it is constructed. On the other hand, the velocities of the turbulent
components will certainly depend on the drag coeflicient of the bars
themselves as well as on the distance down-stream from the grid at which
measurements are made.

These considerations lead to the prediction that if only one form of
mesh is considered, say a square mesh, and if the length / in (55) is taken
as M, the mesh length, i.e., the side of each square of the mesh, then the
constant C in (55) will be an absolute constant independent of the form
of the bars of the grid. We are thus led to a definite expression for

»/M namely,
A v
v=A A s 56)

where A is an absolute constant for all grids of a definite type, e.g., for
all square-mesh grids or honeycombs.

* ‘Ingen. Arch.,” vol. 1, p. 533 (1930).
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PREDICTION OF LAW OF DECAY OF TURBULENCE BEHIND GRIDS
AND HONEYCOMBS

We are now in a position to predict the way in which turbulence may
be expected to decay when a definite scale has been given to it as the air

stream passes through a regular grid or honeycomb.
The rate of loss of kinetic energy of the turbulence per unit volume is

— 31U~ (P + 0%+ W),
which in an isotropic field of turbulence is
-7 PU (—2)
This must be equal to the rate of dissipation W, so that
| —ggU‘%C(Zﬁ)= 159%. 7)

This equation ,is capable of experimental verifications independently
. of the relationship (56) between A and M because, as has been shown, A is
connected with R, through (48) and R, can be measured instrumentally.

On the other hand, if the relationship (56) between A and M is assumed
to hold it is possible to calculate the law of decay of turbulence. Sub-
stituting for A from (56), (57) becomes :

U d

o i ) = g 8

and integrating (58) the following very simple law of decay is predicted,
U S5x

7 =AM + constant. (59)

This expression should be applicable to all cases where the turbulence
is of a definite scale. The linear law of increase in Ui’ should therefore
apply to all wind tunnels where the scale of turbulence is controlled by a
honeycomb or grid, and the value of the constant A determined experi-
mentally, using (59), should be universal for all square grids. Thus, the
turbulence behind a square-section honeycomb with long cells should
obey the same law of decay as that produced by a square-mesh grid of
flat slats or a square-mesh grid of round bars, and the values of A should

be identical in all these cases.

VOL. CLI.—A. 2ac
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For other types of grid or honeycomb, e.g., with hexagonal or tri-
angular cells or a grid of parallel slats or plates, the constant A determined
experimentally by applying (59) to observed values of u' at different
distances down the air stream might be expected to assume other values.

EXPECTED LIMITATIONS TO PREDICTED LINEAR LAwW OF DECAY OF
TURBULENCE

This is a very comprehensive prediction, but it is subject to certain
limitations. In the first place it cannot be expected to apply when Mu/'/v
is small, for equations of the type (56) are not true when Mu’/v is small.
In fact if (56) were supposed to hold when Mu /v is small A would be
greater than M, a condition which is clearly impossible at any rate near
the grid.

A second restriction is that the formula cannot be expected to apply
in the region immediately behind the grid where the mean velocity is
variable, i.e., where the * shadow ” of the grid is still distinct. It is
found experimentally that when the diameter of the bars of the grid
is small compared with M the shadow may extend to as much as 20 M
or 30 M behind the grid, but when the bars are as broad as + M the
shadow disappears a few mesh lengths down-stream from the grid.

A third limitation may be expected to operate when the turbulence is
not entirely due to the grid through which the stream passes. If, for
instance, a very turbulent stream passes through a grid consisting of thin
wires arranged in a large-scale mesh the scale of the turbulence in the
stream might hardly be affected by its passage through the grid.

SUMMARY OF RESULTS AND THEORETICAL PREDICTIONS

(1) When the turbulence of a definite scale is produced or controlled
in a stream of air by a honeycomb or grid of regularly spaced bars the
scale of turbulence can be investigated in two ways. If the Lagrangian
conception of fluid motion is adopted the scale of turbulence can be
defined in reference to the correlation R, between the velocity of a particle
and that of the same particle at time £ later. This conception is suited
for discussing experiments on diffusion of heat from a concentrated
source.

(2) If the diffusive spread of heat or matter from a line source is
measured near the source it is proportional to the distance from the
source and measures the transverse component of turbulent velocity
independently of the scale.
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(3) If the diffusive spread is measured at a number of positions extending
far down-stream from the source a length /; analogous to the mean free
path in kinetic theory of gases can be determined. It is anticipated that
this will be some definite fraction of the mesh size M of the honeycomb
or grid,

(4) Measurements of correlation between simultaneous values of the
velocity at points distributed along a line can determine a length /,
which measures the scale of turbulence from the standpoint of the Eulerian
representation of fields of flow.

Both these lengths may be expected to be some definite fraction of the
mesh length M, at any rate when the turbulence is not very small.

(5) A third length A can be defined in relation to the dissipation of
energy by the equation % =15 y}\—: This length may be taken to repre-
sent roughly the diameters of the smallest eddies into which the eddies
defined by the scales /; or /, will break up.

(6) If the rate of dissipation is proportional to the cube of the velocity,
as it is where the Reynolds’s stresses are proportional to the squares of

: : : Iv
the turbulent components of velocity, A is proportional to \/ uﬁ\: .

In turbulence due to a square mesh honeycomb of mesh length M,
1\% = A \/ I\TVJ' , where A is a constant. This formula is inapplicable
when Mu/'/v is small.

(7) Using this value for A it is shown that the law of decay of turbulence
is such that U/’ increases linearly with x in accordance with equation
(59).

(8) A is also directly connected with the correlation between simul-
taneous measurements of velocity at fixed points separated by a small
distance. This correlation can be measured by suitable apparatus so
that the theory can be verified experimentally.

(9) In isotropic turbulence the mean value of any quadratic expression
of the space rates of change in the velocity is known when the mean
value of any one of the terms in it which is not zero is known. This
leads to the prediction, which might be verified experimentally, that if the
correlation between a component of velocity at a fixed point O and that
at a neighbouring variable point P is measured, the surfaces of equal
correlation are prolate spheroids with P as centre, the long axis is V2
times the equatorial axis and is directed in the direction in which the
velocity component is measured. This statement is identical in substance
though not in form with that given on p. 439.

262
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CoNCLUDING REMARKS

Of these esults and predictions (1), (2) and (3) are substantially identical
with the conclusions put forward in 1921 in my paper, “ Diffusion by
Continuous Movements,” where the suggestion that the diffusive power
of turbulence should be used for the purpose of measuring the scale of
turbulence and the turbulent components was first made. Recently
experiments of this nature have been made by C. B. Schubauer* and (2)
has been verified, as will be shown in Part IV of the present paper. Mr.
Schubauer, however, worked quite independently of my previous work
and indeed gives an empirical explanation of his experimental results.
Conclusions (4) to (9) are, I believe, new. It will be shown in
Part II that all these results, except (9), have now been verified experi-
mentally and shown to be true. Experimental work is now in hand to
test the truth of (9).

Statistical Theory of Turbulence—II
By G. I. TayLor, F.R.S,
(Received July 4, 1935)

MEASUREMENTS OF CORRELATION IN THE EULERIAN REPRESENTATION OF
TURBULENT FLOW

The methods described in Part I have been used by Mr. L. F. G. Simmons,
of the National Physical Laboratory, to find experimentally the correlation
between the turbulent components of velocity u, and u, at two points
distant y apart in a direction transverse to the stream. The measure-
ments were made at mean speed U = 25 feet per second in a wind tunnel
behind a honeycomb with 0-9-inch square mesh. The results are shown
in fig. 1 where the ordinates are R, = % and the abscissae are the

u
corresponding values of y. It will be seen that the R, curve is apparently
rounded at the top and that R, falls to 0-08 at y = 0-38 inches. No
measurements were made beyond this point, but extrapolation seems to
show that R, = 0 when y is about 0-5 inches, i.e., when y is slightly
greater than $M.

* ¢ Rep. Nat. Adv. Ctee. Aero., Wash.,” No. 524 (1935).
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Integrating the curve of fig. 1 the value of [, = r5 R, dy =0-175 inch,
o

so that
I,/M = 0-175/0+9 = 0195, (D

Another set of measurements of similar nature made in a parallel-wall
tunnel 246 cm high by Prandtl and Reichardt is shown in fig. 1 of Part
I, which is reproduced from their paper. Their method was not so
suitable for measuring low values of R, as that of Simmons, and their
curves are not given for values of R, less than 06,

The forms of the R, curves near y = 0 will be discussed later.
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Fic. 1—Measured values of RL= Hoity[u, behind 0+9 inch by 0-9 inch honeycomb;
u? = 0-1015 (ft sec)?

DECAY OF TURBULENCE IN AN AIR STREAM BEHIND A GRID OR
HonNeycoms
Few observations of the decay of turbulence seem to have been made,
and in most of them where observations from which the decay can be
found have been made the experiment was concerned with other
phenomena. In some such cases the necessary data for comparing with
the theory developed in Part I of this paper were not all recorded.

SIMMONS AND SALTER’S MEASUREMENTS BEHIND GRIDS

The measurements contained in Table I were made by Simmons and
Salter* by means of hot wires in the stream behind a grid consisting of

* ¢ Proc. Roy. Soc.,” A, vol. 145, p. 233 (see Table II, p. 233).
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strips 05 inch wide formmg square-mesh grid with 1-inch square holes
so that M = 15 inches = 3-81 cm.

TABLE —M = 1-5 INCHES

U x u’® w U M|y
ft sec inches (ft sec)® - ft sec
319 {123 1-27 4-88 1030
7.2 } 6 i 2:02 f
5:65 ) { 0-565
0-768 7-42 636
576 | ? 10-614 }
5.29 15 0-162 0-402 13-15 332
Mps
Grid
d 4 //
15 f—— 7

16
332 /

Ulw

10 (i) 7o

5 ;oay‘l- 94
6 8 10 12
x/M
FiG. 2—Decay turbulence behind grid of flat strips; @ =1-5 inches; d =0-5 inches;
+ M = 0-62 inches; (i) U/u'= —-0:741-32 x/M

In this table »’ = V42 and x is the distance behind the grid. At
x =6 and 9 inches the “ wind shadow > had not disappeared, the two
sets of readings being those obtained behind the middle of a strip and
behind the middle of a hole respectively. The values of ' and U/u’ in
columns 4 and 5 are deduced from means of the two sets of figures in
columns 1 and 3.

According to the theoretical prediction (see equation (59), Part I)
U/u’ should increase linearly with x. Fig. 2 shows U/u’ plotted against
x/M. Tt will be seen that the prediction is very nearly verified, the points
lying very close to a straight line.



44

The value of the constant A which occurs in (59) can be calculated from
any two of the three sets of measurements. Taking from Table I the
measurements at x = 6 and 9 inches I find

A% =394 50 that A = 198,
and taking the measurements at x = 9 and 15,
A? = 3:49 so that A = 1-87,

The Reynolds number of the turbulence, namely, Mu'/v, corresponding
with the three stations are given in the last column of Table L.

It is of interest to compare the rate of decay of turbulence observed by
Simmons and Salter with that which would result if the complete tur-
bulence pattern remained constant through the range of observation
from x = 6 inches to 15 inches, but the turbulent velocity decreased owing
to viscosity. The turbulent velocity components in that case* would be

proportional to e, so that
| Wis _ (WY 2
u'y (u’6> ’ ()

The 3 appears as exponent in (2) because the time taken by the stream to
travel the distance from x = 6 inches to 15 inches is three times as long
as the time for x = 6 inches to 9 inches.

On the other hand, equation (59), Part I, can be reduced in this case to

U, _lo/u 8 3)

From Table I it will be seen that u'y/u’s = 0-605, thus the supposition
that turbulent motion decays by the direct action of viscosity without
any increase in the diameter of the smallest eddies leads to the prediction

that .
u'y/u's = (0-605)* = 0-22, (A)

The present theory leads to the prediction that
0-605

’ A S Ay 0 ) B
Wil = 33605 0 ®

The observed value is .
Wyl = 01#2072 —0-317. - ©

Comparing these three values ((A), (B), (C)) it will be seen that
Simmons and Salter’s observations are in fairly good agreement with the

* Taylor, * Phil. Mag.,’ vol. 46, p. 671 (1923).

.
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present theory but do not agree with theories of dissipation which do not
allow for increasing size of the smallest eddies with decrease in Mu'/v.

Some further unpublished observations made by Mr. Simmons with a
grid geometrically similar to his 13-inch grid, but of smaller mesh (M =
0:62), are also shown in fig. 2. It will be seen that when plotted non-
dimensionally (i.e., using x/M as abscissae) the points lie very close to those
which represent the experiments with the larger grid. Thus the pre-
diction that the constant A of equation (59), Part I, is a constant for all
similar grids is verified. The question whether A is a universal constant,
as is predicted in Part I, for all square-mesh grids irrespective of the ratio
of the width of the bars of the grid to the mesh remains open so far as
these observations are concerned.

DRYDEN’S OBSERVATIONS BEHIND HONEYCOMBS

The first reliable observations on the decay of turbulence behind a
honeycomb are contained in a report by Dryden.* In that report the
size of the honeycomb was not given, but Dr. Dryden has very kindly
supplied me with the necessary data. The honeycomb was hexagonal,
the distances between opposite faces being 3 inches. Taking M = 3-0
inches the observed values are given in Table II.

TABLE 11
x/M 21 38 58
Uju’ 43-5 62-5 833

If U= 20 ft/sec Mu'/v lies between 1000 and 2000. Similar observa-
tions behind a honeycomb of 3-inch circular tubes arranged in hexagonal
piling gave the results shown in Table III.

TABLE 111

x/M 21 38 58
U/u’ 625 77 100

These results being obtained with honeycombs of circular and hexagonal
tubes are not strictly comparable with those obtained with honeycombs
or grids arranged in a pattern of squares. The difference, however,
may be expected to be slight, and they are included because, as will be
seen in fig. 6 where they are shown in graphic form, they illustrate how
accurately the theoretical linear law of increase in U/u’ is borne out in
practice.

* ¢ Rep. Nat. Adv. Cttee. Aero. Wash.,” No. 342, see also Report No. 392.
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N.P.L. OBSERVATIONS BEHIND GRIDS AND HONEYCOMBS

Recently Simmons and Salter have made some more measurements of
U/, using a hot-wire compensating circuits and a thermo-junction
milliammeter to measure %? in the manner explained in Part I. A set of
observations made behind a grid of round bars 0-875 inch diameter
arranged in a 3-inch square mesh* is shown in fig. 3. In the work
previously described the average value of U/u’ taken over a long series
of observations made at the same section of the tunnel were given. In

A #‘ d
i =
_— : :|_-Grd
1 = | r

50 ' 9

Uju

30 ]

.20

3 4 5 6 7 8 9 10 1 12
Distance from grid in feet

F16. 3—Decay of turbulence behind a grid of round bars. U = 19-5 ft/sec; M = 3
inches; A = 2:20; (i) U/u’ =8-9 4+ 1:035 x/M

fig. 3 the actual observations or means of a small number of observations
are shown. It will be seen that the linear law of increase in U/ is in
good agreement with the experiments. The line shown in the figure is
L—{ =89+ 1-035 ﬁ, which agrees with equation (59) of Part Iif A = 2-20.

A similar set of measurements in a 4-foot wind tunnel behind a 3-inch
square-mesh honeycomb is shown in fig. 4. Again it will be seen that

the measurements confirm the theoretical linear law of increase in U/u/,

* As is indicated in fig. 3, this grid consisted of two sets of parallel rods in
contact so that the central plane of one set is a distance 4 further down-stream than
the other.
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the line in this case being 2—1, =126+ 1230 %, which agrees with (59),

Part I, if A = 2-05.
Observations behind a 0-9-inch by 0-9-inch honeycomb in a 1-foot
tunnel at 5 ft per sec gave a well-defined straight line

U X
- =5 <30 =, 4
7 55+130M )

120
° /

100 ] / s
j
80 o /o

//)r)’»m

6 8 10 12 14 16 18 20 x
Feet from honeycomb

F16. 4 —Decay of turbulence behind a square-mesh honeycomb. U = 20-2 ft/sec;
M =3 inches; A =2-05; () U/w' = 12-6 + 1-23 x/M

U/w
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DRYDEN’S OBSERVATIONS BEHIND GRIDS

Recently Dr. H. L. Dryden has made a series of observations of ' /U
at various distances behind a set of nearly similar square grids consisting
of round bars each about 0-193 of the mesh length. The values of M
were M = 5 inches, 3} inches, 1 inch, § inch, } inch, § inch. Dr. Dryden
kindly set forth his results for me in the diagram shown in fig. 5 where
the abscissae are x/d, d being the diameter of the bars of the grid and x
the distance down-stream from the grid. The numbers attached to the
points are the mesh length M in inches. The straight line drawn in the
diagram which passes nearly through the points corresponding with the
M = 5 inches and 3} inches is

g:7+0%&

and since d = 0-193 M this is equivalent to

%=7+Lm£. (5)

M
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This line fairly represents the observations up to U/u’ = 100, but for
higher values of U/u’ the turbulence does not decrease so rapidly as the
theoretical formula would lead one to expect.

The points on the extreme right of the diagram, fig. 5, correspond with
very low values of Mu'/v, namely, 7 and 14. This is well below the lowest
value of Mu'/v at which the linear law would be expected to hold, but, as
has been pointed out, the rate of decay for a given scale of turbulence at
low values of Mu'/v must be greater than that indicated by the linear law.
Fig. 5 shows that in Dr. Dryden’s tunnel the turbulence dies away more
slowly than the linear law when the turbulence is small. This indicates

o I N | T T / T T T x!s
‘ Taylor's theo7ZA-l‘96 //,0,
160 7

/

I y /| A .
120 ///x%

Sl
33

40

1 1 A AL i i 1
0 200 400 600 800 1000 1200 1400

x/d
FiG. S—Decay of turbulence behind a grid of round bars (H. L. Dryden)

that the large-scale turbulence which is in the air stream before striking
the grid can pass through it. Near the grid this is masked by the more
violent disturbances produced by the grid itself. As the distance down-
stream from the grid increases the large-scale turbulence which has
passed through it decreases more slowly than that produced by the grid
and eventually completely obliterates the effect of the grid.

It seems likely that a honeycomb with long cells might be more likely
to reduce the pre-existing turbulence to a definite scale than a grid of
round bars, and in fact the theoretical linear law of decay seems to be
obeyed very consistently in the disturbances behind honeycombs.
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SUMMARY OF RESULTS ON DECAY OF TURBULENCE

All these results are collected together in fig. 6 and the equations to the
straight lines which pass most nearly through the observed points are
collected together in Table IV, Dr. Dryden’s results with small-mesh
honeycombs, M = 1 inch, % inch, } inch, } inch, have not been included
because the corresponding values of LU/v are so small that the theory

TABLE IV
Authority — M Equation to line in A
inches fig. 6
Honeycomb of round 3-0 U/w' =371+ 1-056 x/M 2:18

3-inch tubes
Hexagonal honeycomb 3-0
5-inch square-mesh 5°0 U/u
Dryden ‘§ grid of round bars
diM =02
3}-inch square-mesh 3:25 U= 88+ 1072 x/M 2-16
grid of round bars

U/ =211 +1-08x/M 216
9:5+1-110x/M 212

I

dM =02

14-inch  square-mesh 1-50 U= —074+132x/M 1-95
grid of flat slats
d/M = 0-33

0-62-inch grid of slats 0+62

S"’Z‘;g“s Square-mesh honey- 0-90 U/w' = 55+ 1-30x/M 196
Salter < comb,
Square-mesh  honey- 3 U/ =126 + 1-23 x/M 2-05
comb
Square-mesh grid of 3 U= 89+ 1:035x/M 2-20
round bars d/M =
0:29

could not be expected to apply to them, and also because, as has been
pointed out, there is evidence that the disturbances already in the stream
pass through the grids and, when M is small, become more important
than those produced by the grid.

The values of A calculated by using the relationship

U __ 5 x
7 constant -+ AT M
as identical with the equations in column 4 of Table IV are given in
column 5. It will be seen from fig. 6 that though U/u’ ranges from 4-9
to 110, and M from 0-62 inch to 5 inches all the observed values of A
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given in column 5 of Table IV lie in the range from 1-95 to 2:20. This
appears to confirm the accuracy of the theoretical prediction made in
Part I that A is a universal constant for turbulence produced or con-
trolled by any type of square grid or honeycomb.

120

80 //4_/1-1;)
N 17, - o
) ~21" Honeycombe |M= 3
880/ 22T | see N84
" £ 1
P P
%730 7
R 22-LGnd M=3
el < see fig3
o Pl
WA
20 -CTol6
3i2ﬂ’us
1032 « (7.1] see ﬁg 2
M4
0 10 20 30 10 50 60 70 80

x/M
Fig. 6—Collected results of turbulence behind grids and honeycombs.

X S-inch grid, M = 5 inches, d = 1 inch.
Dryden (® 33-inch grid, M = 3-25 inches, d = 0-65 inch.
<] Hexagonal honeycomb, M = 3 inches.
A Honeycomb of 3-inch tubes, M = 3 inches.
Simmons { .+ grid, M = 0-62 inch in 4-inch pipe.
and Salter { e grid, M = 1-5 inches in 1-foot tunnel.

f »

EXPERIMENTAL VERIFICATION OF CONNECTION BETWEEN DISSIPATION OF
ENERGY AND INITIAL CURVATURE OF R, CURVE

In Part I it is predicted that near the origin the correlation curve, R,,
will coincide with the parabola

y=3v1-R, ©
where 22 = W/(15 p#®) and the dissipation is W. It has now been shown
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that the dissipation behind a honeycomb or grid is in good agreement
with observation provided : .
A v
— = A /\/ _ 7
M u'M O

where A is a constant whose value lies between 1-95 and 2-2. The
correlation observations shown in fig. 1 were made in the air stream
behind a square-mesh honeycomb for which M = 0:9 inch. It is possible
therefore to test the theoretical prediction in this case because the value
of u'’? or u® was measured at the same time as the correlation coefficient
R, In ft/sec units w® was 0-1015 so that #' = 0-3185 ft per sec = 9:70
cm/sec,
Taking A as 2-0, (7) gives

A . \/ 0-14 — 0-159. 8
M~ 20N G0 x 259 ®

Hence A = 0-9 (0-159) = 0-143 inches. The parabola y = 0-143/T—R,
is shown as a broken line in fig. 1. It will be seen that it does in fact
pass through the observed points near the summit of the curve. The
theoretical prediction is therefore verified in this case.

In conclusion I wish to express my thanks to Mr. L. F. G. Simmons
for permission to publish figs. 1, 3, and 4, and to Dr. H. L. Dryden for

supplying fig. 5.



52

Statistical Theory of Turbulence

III—Distribution of Dissipation of Energy in a Pipe over
' its Cross-Section

By G. I. TayLor, F.R.S,
(Received July 4, 1935)

The success of the theory of turbulence given in Part I, in predicting
the connection between the rate of dissipation of energy in turbulent
motion and the shape of the R, correlation curve, suggests that it may be
possible to use measurements of correlation in order to find out how the
dissipation of energy is distributed over a field of turbulent flow. This is
a fundamental question in any theory of turbulent motion which attempts
to penetrate beyond the stage of empirical assumptions.

By a fortunate coincidence the necessary observations already exist
for the analysis of one case of flow from this point of view. The rate
of dissipation of energy of turbulent flow is

ou\? u®
W=75 y.(—a—y> =15 k. 1)

Reference ‘was made in Parts I and II to the correlation measurements
of Prandtl and Reichardt in air flowing under pressure between two
parallel planes 24:6 cm apart. In these experiments measurements were
taken with one fixed hot wire at seven positions, namely 1, 2, 3-5, 55,
8, 105, and 123 cm from the wall. Corresponding with each position
" of the fixed wire a traverse of the second hot wire was made across the
channel and the variable currents produced by the two wires caused a
spot of light to oscillate over a plate, one of the wires producing a
horizontal movement and the other a vertical movement. The darkened
areas thus produced were roughly elliptical. With very high correlation
between the velocities at the two points these ellipses became very narrow
lines at 45° to either axis. The degree of correlation was found by
measuring the ratio of the axes of the ellipses. The correlation coefficients
measured in this way are those represented in Part I by the symbol R,.
They rise to 1-0 when the movable wire is in contact with the fixed wire
and fall away from 1-0 as the two wires separate. This is shown in
fig. 1, which is a reproduction from Prandtl and Reichardt’s paper of the
curves which represent their results.
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In each case four observations were made very close to the fixed wire so
that the forms of the correlation near their summits were well determined. *
It will be seen that these summits are rounded in the manner predicted in
Part 1. '

By measuring on an enlarged reproduction of fig. 1 I find the values
for (1 — R,) and y at various distances from the wall which are given
in Table 1.

. T T
o O A
04 g
02 E
L 8

1 2 35 55 8 105 12:3cm
———»Distance from wall :
Fi1G. 1—Prandtl and Reichardt’s correction measurements in a 24-6-cm channel

TABLE 1
Distance of fixed
hot wire from wall 12:3(Y =0) 10:5(Y =1:8) 8:0(Y = 4-3)
cm
ymm ..., 3-04 1-93 3-00 2-01 310 1-84
1—Ry ooovivne... 0-0316 0:0132 0-0317 0-0132 0-0346 0-0138
Mem?) ..., 2-98 2:82 2:82 3-06 2:75 2-48
Mean »* ((cm?) ...... 2:90 2:94 2:62
Distance from wall
cm 5:5(Y =6-8) 3 5(Y=288) 20(Y =103
ymm .........0..... 300 1:99 2-84 1-93 3-00 2:01
1—Ry ..ol 0-0349 0-0132 0-0407 00156 0-0627 0-0189
Aem?) ... 2-59 303 1-96 2-36 1-44 2-12
Mean 2 ., .......... 2-81 2:16 1-78
Distance from wall
cm 1-0(Y = 11:3)
ymm ..., 306 2-034
1—R, ..., 0:090 0-0234
Mem?) oo, 1-06 1:77
Mean 22 (cm?) ...... 1-42

* Prandtl’s method is specially suitable for determining the small deviation of the
correlation from 10,
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In Table I the figures given for y are the means of the distances of the
nearer and -of the farther pairs in the groups of four points close to each
of the positions of the fixed hot wires (see fig. 1). The values of A? are
calculated from the formula

3 = )21 — R), 2

and at the bottom of the table the mean value of A% is given for each
position.

CALCULATION OF DISSIPATION FROM CORRELATION AND TURBULENCE
MEASUREMENT

The values of (#'/U,..y)* have been measured by Wattendorf and
Kuethe* for a parallel-walled channel 5 cm deep when U, = 96 metres
per sec.

Their results are given in curve ii, fig. 2, It will be seen that at the
centre of the channel (4’ /U, )% = 0-00135 and that its value increases
towards the walls. The Reynolds number of these measurements was
greater than that of the channel in Prandtl’s measurements in the ratio

960 5 .

m X 2_4—'6 = 167: 1,
but Wattendorf and Kuethe also measured the change in u'/Up., at
the centre of the pipe with change in U,,,. Their results do not extend
to quite so low a Reynolds number as Prandtl’s, but a very small extra-
polation of their curve suggests that at the Reynolds number of Prandtl’s
experiment ' /U, would be about 0-039, so that (4’ /Up.x)? = 0-00152,

Wattendorf and Kuethe give reasons for believing that the values of
#'[Upax should be proportional tof vx/Unax a8 Unmax varies, and their
observations of turbulence, taken in the middle of their channel, confirm
this view.

If this law of variation in #'/Un,. with Reynolds’s number is correct it
must be equally true for all positions in the cross-section of the channel.
Accordingly to estimate the values of u’ /U,y at the Reynolds number of
Prandtl’s correlation measurements it is necessary to multiply Wattendorf
and Kuethe’s values obtained at 9-6 metres per sec in a 5-cm channel by
the factor gwggigg = 1-125. In this way the curve B, fig. 2, is obtained
from Wattendorf and Kuethe’s curve A.

* ¢ Pasadena Publication,” No. 45, Guggenheim Aeronautics Laboratory.
t v, is defined as V' 7,/p where 7, is the surface stress at the wall.

VOL. CLIL.—A. 2 H
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From curve B the values of #2/U%,,, appropriate to the positions where
Prandtl made correlation measurements were taken. These are given
in column 2 of Table II. Multiplying by (114)? gives u'? in (cm/sec)?
(column 3). The values of 2? taken from Table I are given in column 4,
The figures in column 1 are the distances Y from the centre of the channel.

Taking ¢ as 1:80 X 107* c.g.s.,, 15 ¢ =27 X 10-3. The values of
15uu®/3® are given in column 5. This is the rate of dissipation of tur-
bulent energy into heat per cc per sec.

The total dissipation of energy in a column 1 sq. cm section between
the central plane and the parallel plane distant Y from the centre is

Y .,
15 p “ lng. The values of this are given in column 7, Table II,
40

CALCULATION OF RATE OF PRODUCTION OF ENERGY OF TURBULENT MOTION
FROM SURFACE FRICTION AND VELOCITY PROFILE

The dissipation formula (1) gives the rate of dissipation per unit
volume of kinetic energy of turbulent motion into heat. It is possible
to deduce the total dissipation of energy in a pipe or channel if the surface
friction and the mean velocity of the air is known, but it is not possible
to deduce from such measurements or from measurements of the dis-

tribution of velocity across the section how the dissipation of energy
~ is distributed across the section.

On the other hand, the rate of transformation of energy of mean flow
into energy or turbulent flow can be calculated in this way.

Fig. 2 shows the observed distribution of velocity in the channel when
the correlation observations shown in fig. 1 were made. The total
dissipation of energy per cm length of the channel in a section 1 cm wide
is 27,U,, where U,, is the mean velocity in the channel and =, is the stress
on the walls. The tangential stress © at distance Y from the centre is
©oY /b, where 2b is the width of the channel, namely, 24:6 cm. The rate
at which the fluid between the middle of the channel and the plane distant
Y from the centre does work on the fluid contained between this plane
and the walls is U~,Y/b. The rate at which the pressure gradient does

Y
work on the fluid is %’ '{ U dY, so that the difference between these two,
[}

o[ (¥ _ —To[*ydU
»-b-UO Udy UY] or — X UOY < dY], o)

must be equal to the (rate of dissipation of energy by viscosity acting on
the mean flow) + (rate of transformation of energy of mean flow into

namely,

2H?2
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Y
energy of turbulent flow). The former of these is j' (zg> dY, so that

the total rate of transformation of energy of mean flow into energy of
turbulent flow between the centre and the plane is
dU ¥ /dU
?j Y o ay — [ <dY> ay. @)

The rate of transformation of energy of mean flow into energy of
turbulent flow per unit volume is found by differentiating (4); it is

_ ToydU d_U 2
B lay <dY> : )

dy b dY
except in a thin layer near the wall. At the wall itself they are equal to
one another (but of opposite sign) if the wall is smooth, so that the
expression (4) tends to zero at the wall. Except in a thin layer close to
the wall, therefore, the rate of transformation per unit volume of mean
energy into turbulent energy may be taken as

In all cases of turbulent flow p <dU> is small compared with 22 Y °= du

dU
b ;Y aY ay’ ©
In this expression 7, can be obtained from the Karman-Prandtl friction
formula
U_ . . b —Y)v,
=55 + 575 log, [___V___] 0
where T, = pv, 2
Taking from the curve of fig. 2 the observed value U = 95-6 cm per
sec at 3-5 cm from the wall, I find from the formula (7) that if v = 0-14,
vy = 5+39 cm per sec. Taking p = 0:00123, gives v = 0-0357 dynes,
so that =,/b = 0-00290 . dU/dY can be found by taking the slope of
the tangents to the velocity profile in fig. 2 and the values of -° 3 Yf]g
calculated in this way are given in column 6 of Table I
Comparing column 5, which gives with the rate of dissipation per cc,
with column 6, which gives the rate of degradation of mean energy into
turbulent energy, it will be seen that from the centre of the channel to
about Y = 6 cm the rate of dissipation is greater than the rate of trans-
formation from energy of mean motion to energy of turbulent motion.
From Y = 6 to the wall the rate of transformation of mean energy into
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turbulent energy is greater than the rate of dissipation. T his result is
shown graphically in fig. 3.

LIMITATION TO APPLICATION OF DISSIPATION FORMULA

The dissipation formula (1) is only accurate when the turbulence, is
isotropic. It has been shown by Fage that the turbulence in the central
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region of a square pipe is approximately isotropic, at any rate so far as
the equality of the three components of turbulent motion are concerned.
On the other hand, near the wall of the pipe the transverse component of
turbulent velocity becomes greater than the longitudinal component or the
corpponent normal to the surface. Roughly it may be taken that the
region of large divergence from the isotropic condition stretches from
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about r/a = 0-7 to the wall. If the results for a square pipe can be
taken as representative of what would be found with a two-dimensional
channel, it may be anticipated therefore that the dissipation formula (1)
will be seriously in error when Y/d is less than 0-7. In Prandtl’s channel
d =123 cm, so that serious errors in the dissipation formula may be
expected when Y > 8:6 cm. For this reason the values given in column
5 of Table II for Y = 8-8, 10-3, and 113 must be treated with reserve.
They are enclosed in brackets to distinguish them from the more reliable
figures, for Y = 0 to Y = 68, and the corresponding part of the curve
of fig. 3 is shown as a broken line. '

TortaL DISSIPATION IN CENTRAL REGION OoF CHANNEL

If formula (1) could be used accurately up to the wall the total dissipation
must be equal to the total work done so that

_F(Ygng f GE) dY+15uJ:%’;dY‘

It has been pointed out that it is only in the laminar layer near the
2
wall that p.(dU> is appreciable, and in that region the change in

dyY
du . i
— =0 YO
: jo dY is likely to be about equal to the change in j ( dY) ay,

consequently it seems that'we should expect the values of — b j Y%—g day
0
Y=
and 15 LLJ —dY to approximate to one another near the wall. The
values. of these two integrals are given in columns 7 and 8 of Table 11
and are shown graphically in fig. 4. It will be seen that over the whole
region in which the dissipation formula may be expected to be valid the
dissipation is greater than the rate of transformation from mean energy
to turbulent energy, but that at the point Y = 86 cm where the dissipation
formula begins to be seriously in error the two curves are approaching
one another. The fact that they cross one another at Y = 9-6 cm may
be due to the error in the dissipation formula when Y > 86, or it may
be due to the fact that the dissipation in the layer very close to the wall
is necessarily greater than that in a laminar layer in which the velocities
are parallel to the length of the channel. Fage has shown, in fact, that
ultra-microscopic particles very close to a smooth surface past which
fluid is moving in turbulent motion have transverse components as great
as their total longitudinal components, so that in the layer immediately
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adjacent to a smooth surface the rate of dissipation must be greater than
99

dy

The fact that the two curves of fig. 4 are so close to one another at the
point where the dissipation formula ceases to apply certainly affords
experimental confirmation of the accuracy of the conceptions on which
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the theory is based, for it must be remembered that all the physical
measurements which were used in calculating the dissipation curve are
of a totally different character from that used in calculating the rate of
transformation of the work done on the mean flow into energy of tur-
bulent flow. In particular it seems that the numerical factor 15 which
occurs in (1) has some experimental as well as theoretical justification.
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Statistical Theory of Turbulence
IV—Diffusion in a Turbulent Air Stream

By G. I. TavrLor, F.R.S.
(Received July 4, 1935)

It was pointed out in Part I that experiments on the spread of heat
from a line source (e.g., an electrically heated wire) in a turbulent air
stream may be expected to give two elements of the statistical specification
of turbulence. If the spread is measured near the source the value of

the mean transverse component of velocity +/%, or ' in the notation of
Part I, can be found. If the spread is examined further down-stream it
should be possible to analyse the results to find the correlation function
R,, which is the principal element of the representation of turbulence in
the Lagrangian system. :

SPREAD OF HEAT NEARER LINE SOURCE

Recently the spread of heat from a heated wire in a wind tunnel has
been measured at points near to the source by Schubauer.* The stream
was made turbulent by means of grids of round bars arranged in square
pattern. Their diameters were 1/5 of the mesh length and M varied from
5 inches to } inch, The width of the heat wake was found by measuring
the angle subtended at the source by the two positions where the tempera-
ture rise was half that in the centre of the wake. This angle, denoted by
a, depends partly on the amount of turbulence and to a less extent on
the spread of heat due to the thermal conductivity of the air. By
assuming that the effect of turbulence is to communicate to the air an
eddy conductivity B, which is additive to, and obeys the same law as, true
thermal conductivity, a virtual angle o, can’ be deduced by the relation

o(2turb = a? — ‘120, (l)

where «g is the value which o would have if true thermal conductivity
were the only agency involved in diffusing the heat. The angle ay,.,
calculated in this way is taken to be a measure of turbulence. It was
discovered experimentally that the value of ., so found is independent
of the distance between the hot wire and the station at which the spread

* ¢ Rep. Nat. Adv. Ctee. Aero., Wash.,” No. 524 (1935).



63

of the heat was measured, provided that distance is small. The value
of the eddy conductivity B was calculated from the observations and
found to be proportional to the distance x between the hot wire and the
point at which the spread of the heat wake was measured. This relation-
ship is a necessary result of the formal application of ordinary expression
for the width of a wake in a conducting air stream to a case when the
width of the heat wake is proportional to x; it is clear, however, that
eddy conductivity P in this case can have no physical meaning because
in obtaining his expression* for the width of a wake, namely, «” = 1908

/\/ “ —ll} B , Schubauer implicitly assumes that the conductivity is constant
pcUx

over length x, but depends on the distance of the station where measure-
ments were made from the source of heat. Actually, if p is to have any
meaning it must depend only on the state of the turbulent air, not on the
position of the measuring apparatus.

Though Schubauer’s derivation of equation (1) seems to be open to
criticism on the ground that it is based on the hypothesis that the effect
of turbulence can be represented by a virtual eddy conductivity $, which
has been shown to have no physical meaning, yet it seems that equation
(1) can be justified quite independently of any such conception, if the
view of turbulent diffusion put forward in Part I is accepted. According
to this view, the effect of turbulence near the source is to cause a linear

» . Ly . . . .
rate of increase in 4/ Y? with x in accordance with the equation

~

VY
X

] (2)

cl=

where v’ = /1%, .

It is not possible from (2) alone to calculate Dr. Schubauer’s o, but
Simmons and Salterf and also Townend} have shown that the turbulent
components of velocity are distributed according to the error law.
Equation (2) is applicable during the period when R, is nearly equal to
1.0, If R;=1, Y = xv/U, so that the frequency distribution of Y for
the heated particles near the source is identical with the frequency dis-
tribution of v, i.e., it obeys the error law.

If all particles emerging from the hot source have the same initial high
temperature, the distribution of temperaturein the wake must be the same
as the frequency distribution of Y. Thus the temperature distribution

* Loe. cit., p. 3, equation (4).
T ¢ Proc. Roy. Soc.,” A, vol. 145, p. 212 (1934).
i ¢ Proc. Roy. Soc.,” A, vol. 145, p. 180 (1934).
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across the wake must be the normal error curve which also happens to
be that which would be produced by true conductivity. Dr. Schubauer, in
fact, finds that the temperature in the wake near the source is distributed
according to the normal error law.

In the region where R, is nearly equal to |0 we may regard the actual
distribution of temperature as being produced (a) by the movements of

the heated particles to distance Y = %x from the source, Y being dis-

tributed according to the error law, and (b) diffusion by true conductivity
from each of the heated particles. Since the distribution of temperature
in each of these heated areas is also represented by the normal error
curve the final distribution of temperature produced by these two different
modes of transfer of heat must also be represented by an error curve.
It can be proved by direct integration or otherwise that the mean of the
square of deviations due to two independent causes of variation is equal
to the sum of the means of the squares of deviations due to each separate
cause. In the present problem this can be expressed by equation

o = azturb + “20’ (3)
which is identical with (1).

The temperature in the wake is represented by
6 = 05 e~V 4)

where 0, is the rise in temperature in the middle. The half-breadth
corresponding to 0 = 40, is therefore

Y, = vVYi/2log, 2= 1177 Y,

where Y’ = v/ Y2
In Schubauer’s notation therefore ‘{
Kpurh = g!_* == 2352 . (5)
x X

Hence, using (2), the theory of Part I leads to the expression
opurp = 2350 (U, (6)

so that ay,, is independent of x and depends only on v'/U. This is
what in fact Schubauer finds experimentally.

Referring to fig. 5 (p. 4) of Schubauer’s paper, he finds experimentally
a linear connection between a,, and the percentage turbulence u'/U
which is measured by a hot wire. His results are best represented by
Oy = 0—60—4% , Or, in circular measure,

oy = 2624/ U, )
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Cdmparing (7) with (6) it will be seen that they are identical if
v 2-62 . . 8)

It appears therefore that Schubauer’s experimental result, when analysed
according to the theory of Part I, leads to the conclusion that

v =111 . %)

This is very nearly what would be found if the turbulence were in an
isotropic condition for which #% = % It will be seen later that in experi-
ments carried out at the National Physical Laboratory values of v'/U less
than those of «’'/U were sometimes obtained. Since Schubauer’s experi-
mental results show that »'/U is proportional to u’/U, and since some sets
of measurements give u’ > v'while others give u’ < v’, but all give values
of the two quantities which are nearly equal, since, moreover, the measure-
ments of 4’ /U depend on highly complicated systems of amplification, and
are therefore susceptible to errors which are difficult to estimate, it
seems legitimate to conclude that the turbulent flow produced by a grid
becomes practically isorropic at some distance behind it. Alternatively
isotropy might be assumed to exist; the analysis of Part I would then
predict a priori Schubauer’s experimental results with an error of only
119%.

MEASUREMENTS OF DIFFUSION OVER AN EXTENDED RANGE

The measurements described by Schubauer were made at distances from
% to 6 inches from the heated source. These distances are not sufficiently
great for the effect of the predicted decrease in R, to be apparent, assum-
ing it to exist. Recently Simmons has made measurements behind a
heated flat strip and a heated wire in a wind tunnel at distances down-
stream varying from 2 to 36 inches. For this purpose he had to use a
very intense source of considerable length (8 inches). These experiments
arenot yet complete, but one set of measurements behind a 0-9-inch honey-
comb have been completed, and it is of interest to analyse them in the
light of the theory of Part 1. The measurements were made at distances
x =242 52,69 12, 18, 24, 30, and 34 inches behind a nichrome
strip raised to a very high temperature which was stretched across a
1-foot wind tunnel 23 inches behind a honeycomb with square ceils
0-9 inch by 09 inch.

Some typical temperature distributions are shown in figs. 1 and 2.
That at x = 2 inches shown in fig. 1 is similar to normal error distribution,
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The distribution at x = 5-2 inches and 18 inches shown in fig. 2 appear
to differ considerably from the normal error curve, being more pointed
at the top and having a more definite outer edge. Each of the measured
temperature distributions was analysed as follows: first a centre was
chosen so that the temperatures were as equal as posstble at equal
distance on the two sides of the centre. If y is the distance from this
centre, corresponding values of 0 and y were read off from the observed

y*0 dy
distributions and values of ————— were found by direct summation.
J. Ody
Representing these by Y’2 the values of Y’ so obtained are given in column
2, Table I.

TABLE |
X Y’ observed Y’
inches inches inches
0 0 0
2 00465 0-0409
42 0-0828 0-0764
52 0-0935 0:0916
6 0:0967* 0-0888*
9 0-120* 0-1104*
12 0-163 0-154
18 0-205 0194
24 0-244 0231
30 0:270 0-255
36 0-302 0-287
36 0:274* 0-257*

* Earlier observations.

Since the observations were taken on different days under different
weather conditions in an open-ended wind tunnel it was to be expected
that the turbulence conditions would not be constant during the whole
course of the experiments. Some of the earlier resulis seem to have been
obtained under conditions of less turbulence than the later ones. They
are starred in Table I, and the corresponding points in fig. 3 are marked
with crosses.

To find what the spread of the wake would have been if there had been
no thermal conductivity, Schubauer’s expression (1) may be used. In
the present case it may be wrilten

Y/2 . (Yl b‘)a Y20, (10)
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Jyzﬂ dy

{f)dy

~ spreading under the action of conductivity alone in a non-turbulent
stream. If « is the thermal conductivity, p density, o specific heat of air,
then

where Y% is the value which would be found for in a wake

Y2 = X an

paU’
and when U = 20 ft per sec, « = 5-6 X 10-° c.gss., 6 = 0-24
Yi=(245 x 109 x

square inches where x is expressed in inches.

Using (10) and (11) the values of Y’ given in column 3, Table I, were
calculated. These are set forth in fig. 3. To apply the analysis of Part I
it is necessary to draw a smooth curve as near as possible to the observed
points in fig., 3. This has been done; but it will be noticed that con-

03

02

v
R

‘qand\/
(=3
N

10 20 30 40
X inches
FiG. 3

stderable latitude in drawing the curve is possible so that the results
ultimately obtained are subject to considerable error and must be treated
with reserve till experiments can be carried out under better experimental
conditions, ‘
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ANALYSIS OF (Y', x) CURVE, FiG. 3

To complete the analysis on the lines laid down in Part I we must
know U /v’ as a function of x. It has been shown in Part II that U/u' is a
linear function of x, and that

X P
=M -+ const. (12)

ptw

Measurements made in the stream behind the 0-9-inch by 0-9-inch honey-
comb showed that U/u’ = const. + 1-30x/M, and when the measurements
of v’ were made U/u’ was found to be 45 at the position where the source
of heat in the present experiments was placed (x = 0 in these experiments).
On the other hand, it was shown in Part I that the initial value of dY’/dx
must be equal to v'/U at the source, and using the faired curve of fig. 3
the tangent at the original is consistent with v'/U = 0-02 or U/v’ = 50.
Thus according to these measurements

[I—J] —45  and [H] — 50,

z=0 U Jg=

u “z=0
or u' is 10% greater than v’ at x = 0. That they are approximately equal
lends further support to the assumption that turbulence behind honey-

combs settles down to an isotropic state.
If the turbulence is isotropic we may therefore take

U’ = [Up')oeg + 1-30 —l& = constant + 1-44 x, (13)

where x is expressed in inches. It has been mentioned above that
[U/v'}yp = 50, so that (13) becomes

U/t =504 1-44 x, (14)

By taking tangents to the faired curve, fig. 3, the values of Y’ and dY’/dx
given in columns 3 and 4 of Table II were found. The values of appro-
priate values of U/v" from (14) are given in column 5, and in column 6
U v dY’ dy’

are the values of
dx

CALCULATION OF 7

It has been shown in Part I that
,dY’

v' dx

* Compare Part 11, Table IV (p. 452).

[
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4 !

should be a function of n where 7 = ju %dx. Using the expression (14)
for v'jU ’

‘ dx 1
K Ea 10288 x). 15

The values of 4 calculated from (15) are given in column 2 of Table II
and in fig. 3 the values of u are shown. The difference between the v
curve and the faired curve for Y’ represents the effect of the decrease in
R, as 7 increases. Near x = 0 where R, = 1-0 the 7 curve coincides
with the Y’ curve.

TaBLE 1T
1 2 3 4 5 6 7
X . Y’ ax vy 2y M
v’ dx
inches inches
0 0 0 0-020 50 0 0
2 0-039 ) 0:039 0:0374 52-9 0-0359 0-043
4 or 0-075 0:074 0-0135 557 0-0555 0-084
6 0-111 0-096 0-0115 58:6 0:0648 0-123
8 0-144 0-118 0-0100 61-5 0-0726 0-160
12 0206 0154 00080 67-3 0-083 0-229
18 0:290 0-196 0:0063 75-9 0-093 0322
24 0-365 0231 0-0054 84+5 0-105 0:405
30 0432 0-284 0:0044 931 0-108 0-480
10-0036 0-104
36 0-493. 0:284 100040 1017 {0.”5 0-547

CALCULATION OF R,

In fig. 4 are shown the values of II)JY’ agc taken from Table 11, as
ordinates, with 7n as abscissae. It will be seen that vp-Y’ dz; increase

rapidly at first and then more slowly, but it is impossible to tell from these
observations whether the curve is still sloping upwards at the greatest
value of x or not.

It was shown in Part I that R, = Zii( Y’ d;{
R, obtained in this way by graphical differentiation of the curve of fig. 4
are given in Table III and also shown in fig. 4. From this curve it appears
that R, falls very rapidly at first but more slowly later, so that thereis

stili a small correlation equal to 0-05 at n = 0-4 inch. Since this result

>. The values of the



depends very much on the manner in which the faired curve for Y’ is
obtained from the observations it must be treated with reserve. The
values of /M are given at the bottom of Table III, because it may be
expected that when turbulence of varying scales are compared, R, will
be a function of n/M

10 /L’k//h 01
—

()
[~
oY, / z

05 )/‘ 005 >

\’\4 (i
A; 008 § W ’\4_\$
0 i

0 02 03 03 05
7, inches
‘ U g_\g _d (U ,dY’[ .
Fic. 4—(i) . =Y’ ; (i)e R, d (v Y dx (iii) x parabolaR , = 1 {008yt
TasLE 111
L TR 0-02 0'04 006 008 010 014 0-20 030 0-40
R, ...... 0-92 0-75 0:47 033 0:27 024 0-16 O-11 0-056
nM ... 0:022 0-044 0-067 0-089 O-111 0-155 0:222 0-333 0-444
VALUE OF [,
U, dy’ "o
If Y T —— has attained the maximum value of 0-11 at r = 0"-5 inch
then accordmg to equation (15), Part I, this is equal to /;, so that
]1 0' 11
1 =-""" =012 16
M 9 (16)

CURVATURE OF R, CURVE AT ORIGIN

On examining the R, curve it appeared to be nearly parabolic near the
origin.

It has been shown that the R, curve in the Eulerian representation of
turbulent flow is parabolic near the origin, and the significance of this in
relation to dissipation is discussed in Parts I, II, and III. It is of interest

2
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therefore to find out how far the R, curve is also parabolic near the origin.

In fig. 4 the parabola R, =1 — ( 1 )2 is drawn. It will be seen that it

<0_-‘0_8
coincides with the observed R, curve over a considerable range.

SIGNIFICANCE OF THE CURVATURE OF THE R, CURVE AT 7 =0

The form of correlation curves near the origin is discussed in Part L.
In the present case the general expression takes the form

(\g_‘;f = WLty (-1—‘7)2&> a7

where Dv/D is the rate of change with » of the v component of velocity
of a particle as it moves down-stream with velocity U. Since 7y is really
a length depending essentially on time in the sense that

8n=%8x=v'8t,

therefore
Do 1 Dop
(Be) =By - (8)
Hence (17) may be written
Do\t " 1—-R,
(Dt> 2 Lt< - > (19)

Bearing in mind the method of representing the curvature of the R,
curves, which is explained in Part I, we may define the length A, so
that

1 —R )
— = Lt ), 20
7\,12 —»0\ 7) ( )

A, is then the intercept on the axis R, = 0 of the parabola which touches
the R, curve at v =0. In the case represented in fig. 4 A, = 0-08
inches. (19) may be written ‘

Dv>2 40"

(1) =253 1)
Now Duv/Dt is simply the acceleration of a particle in the direction y
expressed in the Lagrangian conception of fluid kinematics.  'The
Lagrangian equation of motion in the y direction is

. 1op__Dv
P 8)) Dt (22)
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Hence when the dynamical equations are considered it will be seen that

(PP _pat 23
() =255 @)

It appears therefore that it should be possible from experiments on
diffusion to find the mean rate of change in pressure in turbulent motion,

namely \/ (:?—?—52

This seems to be important because the disturbing effect of turbulence
on the laminar boundary layer at the surface of a solid moving in a
stream of fluid might be ascribed to the pressure gradients which accom-
pany turbulent motion. If that assumption is made it seems that it is
now possible to express this disturbing effect in a quantitative manner by
means of the Karman-Pohlhausen boundary layer equations, using the
results of applying (23) to diffusion experiments. Considerable progress
has already been made along these lines, a report of which will, it is hoped,
be published shortly.

RELATIONSHIP BETWEEN A AND Ay

The mean spatial rate of change in pressure M ( ap )2 in turbulent motion
' ay

has apparently never been discussed theoretically, nor have any observa-
tions been made on it. Indeed, no observations, even of the pressure
variation \/p=2, appear to have been published, though some were made

many years ago by Pannell* but were never published. It seems certain

that V (%)2 mustdepend on ,/pEand on the mean spatial rate of change
.0y

__.—::2

in velocity M (? >
Y

The equation of motion in the Eulerian system is

_19p_dv K IR S "a_w_a_"> W _ A\ oy
It seems to be impossible, without making further assumptions about
the nature of turbulent motion, to assign even an approximate value to

the terms on the right-hand side of (24). It seems likely thaté V ( )2

\

op
ay

* ¢ Rep. Mem. Adv. Cttee. Aero.,” No. 345 (August, 1917).
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will be of the same order of magnitude as % «/ [ — W+ + wz)]z,

'whiclx in isotropic turbulence is likely to be of order & p /\/ (avf)z The

oy
opE\2 Rz
value of (%) or 41® (5}2)) must be of the same order of magnitude as

—_ i
402(@-;3) ; but the exact relationship will depend on the frequency dis-

tribution of v and ov/0y. It seems, therefore, that ,\/ ( 3_[,)2 is likely to be
%y

of the same order of magnitude as 3p \/ (g”)
))
Assumption—Let us therefore assume that in isotropic turbulence

A/ (:g —3mp A/ ,,—_@T;f (25)

where B is a constant which is expected to be of order of magnitude
unity.
From (23) and (25)
2 20"
o (L)
n ay

i

The value of { —a—;—)> is discussed in Parts T and II.  In isotropic* turbulence

it is %’(\5—?))2 and T(g—;) = 2—;;— so that (ay)a =?2-.
Hence ’ .
: o [ N
B — 3 (Tg) @7

The assumption which is represented by (25) is therefore equivalent to
the assumption that A, is constant multiple of \.

COMPARISON WITH OBSERVATION

For the turbulent air behind a square-mesh honeycomb, M == 0:9inch,
it was found that U = 20 ft per sec, A, = 0-08 inch (see fig. 4).

* Equation (44), Part L.
t Equations (47) and (48), Part I.
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For the same honeycomb at U = 25 ft per sec it was shown that direct
observation and calculation from the observed energy dissipation agree
in giving A = 0-143 inch.

Since for a given size of honeycomb X is proportional to* u'* and
since within wide limits «’/U is constant for a fixed distance behind the
honeycomb as U varies, the value of A at U = 20 ft per sec is

A= 0-143 «/——«O 16 inch. (28)
Hence from (27)
2 0 16
0 08 = 0-94. (29)

The fact that B happens to be so nearly equal to 1-0 can have no
significance in view of the uncertainty in determining the R, curve,
figs. 3 and 4, but the fact that B turns out to be of the order of magnitude
unity does seem to confirm the general accuracy of the conception here
put forward of the connection between the statistical representation of
turbulent flow in the Eulerian and Lagrangian conceptions. The whole
question clearly needs more experimental work on the lines laid down in
the present series of papers.

In conclusion I should like to express my thanks to Mr. F. L. G.
Simmons of the National Physical Laboratory for permission to make
use of the unpublished data contained in figs. 1 and 2 and in Table L

* Equation (56), Part 1.
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Revised 6 November 1937)

INTRODUCTION AND SUMMARY

G. I. Taylor (1935), in a paper of fundamental importance, introduced
the conception of isotropic turbulence and applied it, with interesting
results, to the problem of the decay of turbulence in a windstream.

In this paper we develop a general theory of isotropic turbulence. The
correlation coefficients between two arbitrary velocity components at two
arbitrary points form a tensor called the correlation tensor.- Due to isotropy
the tensor corresponding to one fixed and one variable point has spherical
symmetry ; due to the condition of continuity it is completely determined by
one scalar function. The mean products of the derivatives of the velocity
fluctuations are expressed by the derivatives of the tensor components; in
this way laborious calculations for obtaining such mean values are elimi-
nated. The correlation between three components (triple correlation) is
discussed.

After developing the kinematics of isotropic turbulence the dynamical
problem of the change of the various mean values with time is considered.
It is shown that using the equations of motion a partial differential equation
connecting the double and triple correlation functions can be established.
The solution of this equation is investigated first in the case when the
triple correlation is neglected and the shape of the double correlation function
remains similar and only its scale changes. Equations for the dissipation of
energy and vorticity are deduced. .

Finally, & possible solution for large Reynolds numbers is given and
applied to Taylor’s problem of the decay of turbulence behind a grid.

Taylor’s fundamental relation between the width of the correlation
function and the size of the small (dissipative) eddies is confirmed. However,
it is believed that the linear law for the reciprocal of the root mean square of

* Research Fellow, King’s College, Cambridge.
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the velocity fluctuations as a function of the distance from the grid is a
special case; in the last section of the present paper a more general functional
relation is suggested.

§§ 6, 8 and 9 have been rewritten and § 11 inserted by the senior author in
September 1937,

A—THE KINEMATICS OF ISOTROPIC TURBULENCE

1—The definition of isotropic turbulence and immediate deductions

Isotropic turbulence may be defined by the condition that the average
value of any function of the velocity components and their derivatives at a
particular point, defined in relation to a particular set of axes, is unaltered
if the axes of reference are rotated in any manner and if the co-ordinate
system is reflected in any plane through the origin. We consider average
values with regard to the time and suppose that the fluctuations are so
rapid that the variation of the average value is negligible throughout the
period of time required for averaging. Thus, in fact, we shall consider the
average values to be slowly varying functions of the time.

Consider a particular system of co-ordinate axes Oz, Oz, and Oxz; and
take two points P(zy, 0, 0) and P’(zy, 0, 0) on Oz,. Denote by u,, u,, us
and uy, ug, %3 the velocity components at P and P’ respectively. Let us
now suppose that 42, uZ, u2 are all independent of position. (By isotropy, of
course, u? = ug = ul (=u?, say).)

The correlation coefficients u,u//u® and u]—u;/@—az for j = 2 or 3 will be
particular functions f(r, t) and g(r, t), say, of the distance » between P and
P and of the time. It seems to be fairly evident physically that the mean
value u;u} = O whent + j inisotropic turbulence, since it appears to be equally
probable that «, u,, for example, will be positive or negative. It is an easy
matter to prove these results analytically. The mean values W; and @_cru,
for j = 2 or 3 can be shown to vanish by a rotation of the axes of x, and x,
through 180° about the xz,-axis. Denoting transformed values by capital
letters we see that U, = u,, Uy = u;, U; = —u;and Uj = —u; forj =2 or 3
80 that, for example,

But by the isotropic property
0,0, = i

* Tt is assumed that the turbulence is statistically uniform as well as isotropie
80 that correlations do not depend on the position or orientation of the line PP’
but only on its length.
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so that u, «} is zero for j = 2 or 3. Similarly u,;u, is also zero for j = 2 or 3.

The mean values uy %y and uzu, can be shown to vanish by reflexion in the
x,, %3 plane. Denoting, in this case, reflected values by capital letters we
see that U, = —u,, U = —uy, U, = u,, U = u;, so that, for example,

O,U;5 = —ugu;.
But by the isotropic property
UQU:; = ?;‘2_?;‘;’

and hence u,u; vanishes. Similarly u,u, is zero.

2— Lemma

Consider now any two points P and € in the fluid. Denote by p the
velocity component in a particular direction PP’ at P and by ¢ the velocity
component in the direction @@’ at ¢. We shall determine an expressmn

for the correlatlon coefﬁcnent pglut.

y Fia. 1

The intersecting lines PP’ and PQ (see fig. 1) determine a plane. Denote
by @@" the orthogonal projection of Q@' on this plane; @”Q’ will then be

normal to the plane. Denote by «, # and y the angles PPQ - PQQ",
QQ'Q’", and by p,, p,, p; and ¢, g,, ¢5, respectively, the velocity components
at P and @ in the direction P@, the direction normal to P@ and @"Q’, and
the direction @"@Q’'.* Then

P = P, coSA+Ppysine,

g = qyco8 fisiny +¢q,8in fainy 4¢3 cosy..

* For simplicity the figure is described as it is drawn in fig. 1. When P’ and Q"
are on opposite sides of PQ the sign of # must be changed.
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Therefore

Pq = Pyq,cosa cos f siny + p, g, cos o sin § siny + p, q5 cos ot cosy

+ Pyqy cos B siny sina + p,q, sin f sina siny + p, g, sina cosy.

We have already proved that all the mean values here except p,¢; and
g?qz vanish, and we have denoted by f(r,¢) and g(»,t) the correlation coeffi-
cients p,q,/u? and p}l;/uT, where P¢ is supposed to be of length . Thus

p:Z = [f(r,t) cosa cos £+ g(r, t) sina sin F]sin y. (1)
u

3—The correlation tensor

Consider now any particular co-ordinate system and suppose the velocity
components at P, ¥y, ;) and P'(xy, a3, a3) are (uy, Uy, ug) and (uy, Uy, %3)
respectively. The mine quantities W for 4, j = 1, 2 or 3 may be shown to
be the components of a second rank tensor. The transformation law can
readily be seen to be satisfied since the dyadic product of two vectors is a
tensor so that each of the contributions u,u; to the mean values form a
tensor. Clearly the operation of taking a mean value will not alter the
transformation law satisfied. Hence we may consider the ““correlation
tensor” R defined by

wR =u? [Ry, Ry, Ry\ = [uu] wuy uu,
Ry Ry Ry Uptly  Uplly Uy
By, Rs Ry ug Uy @ ugug
or wR = uR,; = wu] i,j=1,2o0r 83, (2)

By means of the lemma which has been established each component of R
can be evaluated in terms of the functions f and g and the vector r whose
components are & = ¥{—a&;, & = v3—a,, £ =2a53—x,;. In this way we
obtain

R = L0200 g1, @

1 0 0
where r = |r| and I is the unit tensor (O 1 O).’
0 0 1
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By expressing the fact that the velocity fluctuations satisfy the equation
of continuity we can now obtain a relation between f(r, t) and g(r, ). Since
the velocity fluctuations at P’ satisfy the equation of continuity

ou; ,
A
where the summation convention is in operation. Therefore
2 (ujny) =0 (4
ax; 1Wil = Vs )

since u; is independent of x}, ; and x3. Thus we obtain the result

Ok,

for j = 1, 2 or 3 by dividing equation (4) by %2 (which is independent of
position), by taking mean values and using the definition of R;; (see
equation (2)). By the definition of £, §,, £, we may write equation (5) as

Ry, _
o¢;

Using the values of the components of R given by equation (3), and also
the fact that equation (6) is valid for all values of £,, £, and &,, we find

=0. (6)

of(r, ¢
2, 0 - 29(r, ) = —r L0210 )
Since both f(r, ¢) and g(r, t) are even functions of r
f(r» t) 1+f02, fo 4' (8)
,.4
From equation (7) we then find by equating coefficients of 72 and r*
2fo = g0, - (10
3y = gt (11)

Further; substituting these expansions for f and g in equation (3) we find,
for small values of r, that

R=(1+g° )I+( 2‘%) , (12)
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neglecting fourth and higher powers of . Using equation (10) we may
write equation (12) in the form

R = (1+fr5)I—}forr. (13)
We notice, in passing, that

62Rk,) " .
AF AR = when k=1l=1i=3j,
(ag,. T/ L J

=2f; when k=I[l%f1i=4j

] (14)
=—1fs when k=i+l=j or Ic=j4=l=z‘,J

= 0 otherwise;

we shall require these results later.

We may, at this stage, point out an analogy which is helpful in creating
a physical picture. The expression (3) for the correlation tensor is of exactly
the same form as that for the stress tensor for a continuous medium when
there is spherical symmetry. In the analogy f(r) is the principal radial stress
at any point, g(r) is any of the principal transverse stresses, and Ry, is the
component in the k direction of the stress over a plane whose normal is in
the ¢ direction. Further, the relation between f and g given by continuity
in our problem corresponds to the condition for equilibrium in the stress
analogy.

4—The correlation coefficients between derivatives of the velocities

Taylor (1935) had occasion to calculate the various correlation coefficients
between' first derivatives of the.velocity components. These calculations
were made by transforming axes, using the equation of continuity and
applying the. definition of isotropy. Even for the first derivatives this
method is fairly laborious, whilst for higher order derivatives the work
involved makes it almost prohibitive; it is hardly possible to decide before-
hand whether a particular transformation will lead to a new relation or will
merely give one that has already been obtained.

The determination of the correlations both quickly and automatically
is an interesting application of the correlation tensor. Let us take, as an

example, the determination of O % Now
ox; 0x;
0 — — 0 —oR
. AT S Y dnid <
axi (ukul) u axiRkl U agl ’ (15)
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i.e. since the velocity fluctuations at P are all differentiable functions of x;,

auk r_ '—26R,d
5"5;“' =—u% %, (18)

. ouy Bu, — 2Ry,

.e. — U 17
e om0, " O, O, (17
If, now, we make P and P’ coincide we obtain the result

3uk au, ——2( aszl) .
W 7= 18
o, ax, 0,06, ) gm0 (18)
'We obtain the values of et 85 8 g when §, = £, = £; = 0 immediately from
)
equations (14). Hence, for example, we see that
Bu‘ 2 T
(5) - s (19)
o _

Ziulau2 6u,8_u_2 TEe
and that B, 0wy — By om, 140
ou,
S (aml) ‘ L)

or, alternatively, == (gu‘) (22)
Ty
by equations (19) and (20) respectively.
Similarly, all other correlations of first derivatives can be obtained. -
This method is immediately applicable to higher order derivatives.
Exactly as for the first derivatives we obtain, for example, the result

02 U, 0? 7] 3 3“Rk,
O, 0w O, 0,

B G a s N #)

The fourth derivative of the components of R can be obtained from
equation (3), and using the expansions (8) and (9) we find, for example,

T Ly, ”
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g 1 2 2 fiv
3) = 3urfy, (25)
__ /R _
and u2( 11 = 2yl fiv,
08308 g —gmg0 © O
Pu o, [ Oy \F 2 P\t 8 [0Ru)E
sothat = () ~ola) ~3(a) (26)

and so on. .

For completeness we include the results for first and second derivatives,
writing (u, v, w) and (z, y, z) for (uy, u,, u;) and (x;, ,, x3). For the first
derivatives*

S R ) -
ox] 2\oy)’ Oxdy oyodx  4\dy/) "
For the second derivatives

CT- G- 55

Oa? oyoz) — oytor 3\oy?
N
(Bxay T ox20y? 9\oy?/’

(28)

OPu P P P ) Py
Ox20xdy Oy?0xdy  6\oy?)’
Pu o Fu v o o ___1_(@)2
0x020ydz 02 Owdy Oyozdzox  18\0y?) ' |

All mean values which cannot be brought into one of these forms by cyclic
permutation of the letters vanish.

Itis obvious that the process could be continued and the higher derivatives
of R, give analogous expressions for the mean products of the higher de-
rivatives of the velocity components. Taylor’s development formula for
his correlation function R, (1935, equation (486)) is a special case of the
general formulae obtained in this way. His equation, which he effectively
found as early as 1921, would be expressed in our notation

ox,) 2 \ Ox}) 1
— -

w21 a2 4l

g(’l‘, t) =1-

An analogous expression can be written for f(r, ¢).

* These results were first given by Taylor (1935, p. 436).

Vol. CLXIV—A, 14
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5— Expression of mean values by integrals

It is known that the velocity components in an incompressible fluid can
be expressed by a vector and a scalar potential. In the present case (in-
definitely extended fluid without sources throughout the whole fluid) the:
scalar potential vanishes and the velocity components can be written (it
is convenient to use z, ¥, 2, %, v, w for the co-ordinates and the velocity
components in this section)

oH 0@ oF oH 26 _oF

B e e = e ——— = *
“ dy oz’ S wm YT o’ (29)

where
_ 1 2;‘ 1 W W) — 1 wl:l ' du' do’
——4ﬂfffrdxdydz, G——Mffj?dmdydz,
H_—fffﬁ’fd'dydz, (30)

0y, Wy, o, are the components of vorticity at the point (', ¥, #'),

P = @ =)y P+ (=2,

and the integration extends throughout the fluid. These results enable us
to express correlations between vorticity components and velocity de-

rivatives conveniently as integrals. Consider, for example, w,=—. Now

oy
o e s~ [ ara]
= erf_”? z —-a;)b(y'—y) w,’,—{s(y;y) —?173} w,’,]dw'dy'dz', (31)

g0 that

LT P sy
(32)

Now we can define a correlation tensor V for the vorticity components
in precisely the same way as R was defined for the velocity components.
Hence, using an obvious notation,

W = we W = Wt
(/) v :cVa: Wy Wy = xv;:

* See Lamb (1932). These results are purely kinematic.
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and

_ E[[[[36'=2) U U o ,
xay fff[ Voy— { rsy ~ V., |de dy dz'.  (33)

When the turbulence is isotropic this method of approach has no special
merit since the required results may be obtained more easily by other
methods. It is clear that the form for V is exactly similar to that for R
(including the condition arising from continuity) in isotropic flow; using this
fact the integral in equation (33) can be evaluated and the result compared
with the one that can be deduced immediately from equations (27).

6—T'riple correlations*

We shall now consider the mean values of the product of three-velocity
components u,, u;, 4y, where u; and u, are the instantaneous values of the ¢
and j components of the velocity observed at an arbitrary point P and u;
is the k-component of the velocity observed at another arbitrary point P’.
Let us consider again homogeneous isotropic turbulence. Then

ul = ul = uy? = u?
and we write wpuyug, = (ud) Ty,

where Ty, is a tensor of third rank. The tensor 7}; will be a function of
&y, £s) £y wherd &, = 2 —u,, &, = @) —x,, &5 = §—x;; we call it the tensor of
the triple correlations. In order to find the expression for 7}, as a function
of the £’s, let us assume first that both points P and P’ lie on the z-axis.

Then it is obvious that all quantities u,w;u;, belong to one of the following
8ix groups, uduy, ufuy, u, w; Uy, 1y U;uy, ;u;u; and u;u;uy, where ¢, §, k can be
equal to 2 or 3. Due to the assumption of isotropy 173_11,—,’6 =0, uyu;u; = 0,
and u,u,u;, = 0, because by reflexion of at least one of the axes z, or , these

expressions certainly change their sign. Furthermore, u; u;u; and w;u;u;
vanish for the same reason unless j = & or ¢ = j. Hence only the following

mean values remain as possibly different from zero: ufu;, u, uyug, %, Uy,

uduy, uSuy. Obviously because of isotropy u, u,uy = u, usu; and uiu; = ufui.
Hence three independent quantities remain different from zero; we put
wjuy = (W k(r), wyuyuy = wyuguy = (u2)t g(r) and u2u1 = ufup = (@ h(r).

* In order to distinguish between correlations connecting two and three velocity
components the correlations treated in the previous sections will be referred to in
the following sections as “‘double correlations”.

142
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(Fig. 2 represents the double and triple correlation functions which do not
vanish because of isotropy.)

It will be seen that the series development of the function %(r) for small
values of » starts with the term in 73. For, developing %; in a series of
powers of the variable §;, = #; —, = 7, we obtain

i =+ g but g
= Lo i
(R glr)

'u; o hir)
Moo w k(r)
L»——Jt e g(r)

Fia, 2

Now, reflecting the a-axis all the coefficients of even powers of £, change
their sign, and consequently these coefficients must vanish in the case of
isotropic turbulence. Because of the homogeneity of turbulence

ou, loud

2

ulég= 55-5)

also vanishes. Hence, the development of u3u; starts with the term

% ui agal ga
and correspondingly

k(r) = £"(0)~ +kV(O)120

Until now it has been assumed that P and P’ are situated on the z-axis.
In order to obtain the general expression for w,u,u;, we take PP’ to be an
arbitrary direction and denote by (p,, p,, ps) and (p}, pi, p4) the velocity
components at P and P’ along three mutually perpendicular lines whose
direction cosines are (I;, my, n,), (I, Mg, ny) and (Iy, my, nz). In particular,

we suppose that I, = £,/r, m, = &fr,n, = £s/r, 8o that the first line is in the
direction PP’
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We then obtain for the velocity components along the z, y, z axes:

I 7

Uy = Py uy = ;25

Uy = MyP;, Uy = M Py (34)
’ ’

Uz = N Py, Ug = N; Py

On the other hand, because of isotropy

PPt = (WA E(r), Py papy = P05 = (WD)Eq(r) and pip; = pip; = (WA(r),

all other combinations being equal to zero.

Using the expressions (34) and substituting for the mean values of the
products of the p’s the functions k(r), ¢(r) and A(r) we find after some
analysis that

kh2q

wguguy, = (W Ty, = (ud)i {gzgjgk +3u§k +3uc§1 +6Jk£z , (35)

where d;; is the Kronecker delta (d;; = 1 when 4 = j and §;; = 0 when 7 # j).

It is seen that 7', is an odd function of the variables £, £,, £;. By inter-
changing P and P’ we change £, §, and £, into —§;, —&; and —§&; re-
spectively. Hence the mean values of triple products composed of one
component measured at P and two components measured at P’ can be
expressed by the 7';,’s. .For instance

Tod o . i !
Uiy = —UpU ey, = — Uy Uty = — (UP) Ty

This relation will be used in § 8.

We shall now show that because of the continuity relation between the
velocity components the functions & and ¢ can be expressed by k. Since
u; and u; are independent of the variation of «y, it follows from the continuity
equation that

0
P (w;ujup) = 0. (36)

: ' — 0
Hence 8§ (wyuyu) = or 3, Tire = 0. (37)

By substituting (85) in (37) and carrying out the differentiations, we find

K~k  2k—2h—6 2h 2
!Eiéjl: e ‘1]+3( 9+h) (38)
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The symbols &' and %’ denote differential quotients with respect to r. The
k, k and q being only functions of r, the expressions in the brackets must
vanish separately. This leads to the results

— — %,
g=—h r dh } ' (39)
= — ——2-d'—r.

It was seen above that the development of %(r) for small values of r starts
with the term containing 73, Because of (39) the same is true for A(r) and
q(r).

The expression (35) and the relations (39) carry the general analysis of
the triple correlations as far as we did in § 3 in the case of the double corre-
lations.

7—The correlation between pressure and velocity
We shall now prove that the mean values w—u; ( = 1, 2 or 8), where w is
the pressure at (2, %,, %,), all vanish. Again, denote by (p;, p;, p;) the
velocity components at (), ;, ;) along the lines whose direction cosines
are given by (I, m;, n;) (i = 1, 2 or 3) and defined in the preceding paragraph.
It is clear, by symmetry, that wp] (j = 2 or 3) vanishes. It is, however,
necessary to introduce the equation of continuity to show that wp] = 0.
Then let us write L
wp;y = (@ {u?} s(r).
We find immediately from (34) that
wu] = [ {u [La(r),
wuy = {@? {uBf [m, s(r)], - (40)
wug = (@ {2 [n5(r)].
Here again, the equation of continuity leads to the condition

o, @) = 0

for all values of £, £,, £;. Transforming to spherical polar co-ordinates we
see that 3
a—lr[r2 sinfs(r)} =0

for all values of » and 6, so that

%s(r)+ﬂr—) = 0.
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Again, since ¢ is regular at the origin, the appropriate solution is
s =0.

Hence, wu} = 0 for § = 1, 2 or 3. Similarly, 117171 =0forj=1,2o0r3.

B—DyNAMICS OF ISOTROPIO TURBULENCE

8—The equation for the propagation of the correlation

The equations of motion at the point P(x,, x,, x;) can be written

ou; ou, 10a

fa— 2 . 4
ot +uy o, = 3 i+ vV2u, (41)
or i ) V2 0 o o2 i 1 }
i ’ ! * Ox% ox}  Ox} F '

Let us multiply equation (41) by the k-component u; of the velocity at
P'(xy, x5, x3), 80 that
,Ouy  , Ouw, —u, 0w

o M % TP ey, 42
Uy, e +u"u’8x, P ax,+ vup Viu, (42)

Consider now the expression wu;u, g%" It will be seen that, in virtue of the
¢

equation of continuity,
ou;
axj

/ 4 /
ukuj = a_x; (uiuj'll«k)- (43)

Now u,u;u;, is a function of £, £, and £; and obviously

0 0
%‘j(uiuluk) = '@(’M’%uk)- (44)
—upow 10
Furthermore, —F* = = — (wuyp), 45
' P om, poE (45)
. — . —"llq'c ow . .
and since wu;, vanishes everywhere, 5 also vanishes. Finally,
4

Vi(ugug) = Vi),

02 or o?
where V2=5§-%+'8—€—g+a—é.g.
Hence we obtain the equation
0uy 0 s —
U ‘a*ti-a_g;(“tu; ) = VWiuu). (46)
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In an analogous way we obtain
dul

“h

We have shown in § 7 that

+ i (ugujuy) = vV”(Tu,’,). (47)
o,

Uy = — (U Uy, (48)
and substituting (48) in equation (47) we obtain

ou;, d — —
Uy —a—t"‘-f(ujukui) = »V¥(u,u). (49)

Adding the equations (46) and (49) and remembering that ugup, = uPR,, and
ugusu;, = (uf) Ty, we obtain finally

0
5 (WRy)— (u’)'ag (T + Tige) = 20wl VERy. (50)

In view of the form given for the tensors B, and T, in equations (3) and
(85) respectively, equation (50) may clearly be reduced to a differential
equation connecting the functions f, g, k, ¢, . By using the equation of
continuity in the form given by equations (7) and (39) we can eliminate
g, k and ¢ and obtain a partial differential equation connecting f and A.
The analysis can be carried out by choosing any component of R;,. Then
equation (60) contains terms multiplied by £,£, and terms which are func-
tions of r alone. Equating the terms containing £;£, we obtain a relation
for 9/t (f — g) and equating the terms which are functions of r a relation for
og/ot. Eliminating og/ot the following equation for f results

f"2)+2( 2)l(ah+4h) = 2vu (82f+g%£) (61)

We call (61) the fundamental equation for the propagation of the corre-
lation function f(r).

9—The decay of turbulence
Before proceeding with the discussion of the solutions of equation (51)
we shall show how Taylor’s equation for the decay of energy and the equation
for the decay of vorticity already given by the senior author (Kirmén
1937a) can be obtained as deductions from equation (51).

dh 4

Forr-Of—landd + - h—O (cf. § 6).
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Hence we obtain from (51)

ou* 0%f 4of
- A e 62
ot = (37‘2 rar)r o (62)
or with f=Ll+3for2+defivrt+..., (53)
o s 54
= 10vfyu?. (64)
Now Taylor’s definition of the length A is given by the equation
A2 = —2/g0. (54a)
‘We have shown (equation 10) that f” = }gg. Hence
d? u?
Or if, considering Taylor’s problem of the decay of turbulence behind a
d 14
honeycomb, we substltute = Uin’
1d— u?
Faowt == 10w, (56)

which is Taylor’s equation for the decrease of the mean kinetic energy of
turbulence.

Now we shall substitute the expansions given by equation (53) in
equation (51) and equate the coefficients of the terms containing r2. Con-
cerning the triple correlation function A(r) we notice that

k(r) = % hy'r®+ higher terms. (87)
Hence we find dt[% fau?]+ Thy (w?)t = Tufivul, (68)
Obviously fju? = —u2/A% On the other hand, we find the mean square

of the vorticity components using the formulae (19), (20) and (21)
©? = W} = W} = 5u?/A.
Hence equation (58) can be interpreted as the equation for the decay of
vorticity. Let us denote w?+ w+ w} by @? then w® = 154%/A% and from

(68) follows

dw? 14
e — g = T pwBARf
7 TORY (u?) 3 YRR,
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A%flv is the reciprocal value of the square of a length; in order to obtain con-
1 7
formity with the energy equation (55) we put ©= 1—5/\2f iv. Then

d-a_)é oot —(_‘)—_2 59

From the equations of motion the senior author obtained the equation*
(Kérmén 19374a) . .
dw? Ouy w? (60)

L wyw, = 100
dt 20).‘ Wy axk Ovlli

Equations (59) and (60) are identical. Because of the continuity equation

~2w,0

ouy _ (azwﬂm _ 82<ujuk)) (%_ %)
ox;,  \ Ox;0m, om;om; ) \Ox, Omy)’

Now the mean values, which constitute the expression on the right side,
can be calculated by differentiation of the equation (35). For instance,

0%(uw;uy) Quy [33(%“1“2)
OOy, 0y, | 0850840k Jgimg=gimo’
and so on.

Carrying out the computations the identity of equations (59) and (60)
can be shown without difficulty.

It is seen that the equation for the decay of turbulence and for the decay
of vorticity follow from the general equation for the spread of correlations
by development of the correlation functions in powers of the distance 7.
The expression for the decay of vorticity contains two terms: one corresponds
to the change of vorticity by deformation of the vortex tubes, the other
corresponds to the action of viscosity.

* As the senior author found the equation (60) he realized that the condition of
isotropy alone does not lead to a further reduction of the equation. However, he
thought that in a random isotropic turbulence the expression containing the triple
correlations should vanish because the extension and the contraction of portions of
the vortex tubes should be equally probable in an ideel fluid. As the authors carried
out their first general analysis of correlations, it seerned that a general proof could
be found for the vanishing of the triple correlations, Correspondingly, the senior
author stated in his papers on the subject (1937 @, b) that the triple correlations and
the term in question in equation (60) vanish because of isotropy. Closer analysis
showed that this statement is erroneous. To make the triple correlations vanish,
some further physical assumption on the random character of turbulence is
necessary.



10—Self-preserving correlation functions

We write equation (51) in the form

o), (0 [ Vu ] -
ot Br or v
Obviously, the influence of the triple correlations depend on the relative
) 72
magnitude of the quantities a—{ and —:~h. Let us consider first the case of
“sma.ll Reynolds number” of the turbulence, i.e. let us assume that
W2k
a‘f i:— Then neglecting the triple correlation function &, we write
& fu?) o*f  4of
V=7 62
ot v (6 23 ar) (62)
or eliminating %% by use of equation (54)
of 82f 48f
. 3
= (872 L ) (63)

‘We notice that in this case f(r,t) is determined by the values of f(r,#,), i.e
if the correlation function f is given for t =1, it is given for any arbitrary time
t>t,.

We shall consider a particular set of solutions of equation (63). We notice
that this equation reduces to an ordinary differential equation if we suppose

fis a function of y = «7{17) only. When this substitution is made, we obtain

the equation
: " é .x I.— " =
7+ 3+ ) - o= o (64)

where dashes denote differentiations with regard to y; we shall speak of the
correlation functions given by the solution of equation (64) as ‘“‘self-
preserving”’, since the form of these curves is the same at all instants
although the actual length scale varies. We shall now denote by « the
arbitrary constant —f"(0).

First of all it may be pointed out that equation (64) is related to the
confluent hypergeometric equation. In fact, the solution we require (i.e.
the one which satisfies f = 1 and f' = 0 when y = 0) is equal to

2
) = 2052 M55, (65)
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where M, ,.(z) is the same solution of the confluent hypergeometric equation
as that defined by Whittaker and Watson (1927, p. 337, para. 16.1) and
denoted by this symbol.

When a < } it will be seen, after some reduction, that (Whittaker and
Watson 1927, p. 352, example 1)

I'(5/2 1 _x,
700 = Troay rg o AT (oo

When o = } we obtain the solution
f(x) = e, (67)

When « >} the solution is given by the integral of the same integrand
round a particular contour (Whittaker and Watson, 1927, p. 257).

Let us now consider the decay of turbulence when the correlation function
ig one of these special types. Returning to equation (54) we see that

vy u
% =— 10%% (68)
and integrating we find
1 1 ( 4 )5“
==l , 69

where the condition «? = u when ¢ = ¢, has been applied.

Assuming, for the moment, that the turbulence produced by a particular
grid or honeycomb is of the type which has a wself-preserving correlation
function and starting from some point outside the wind shadow, where the
fluid passes at the time £,, we write ¢ = t;+a/U (U denotes the velocity of
the main flow and « is the distance measured downstream). Then we may
write equation (69) in the form

1 1 x \5«

where 4% = uf, when x = 0.

The quantity Ut, is a length which we can relate to the value A, of the
length A (defined in equation (54a) above) at the origin from which « is
measured. For
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2
so that, with (g) = —1/A2
r=0

or?
=2 (71)
2
and therefore by = oc_:}\o'

Finally, from equation (70),

U U ( xv )5“
=== 1+ 5575 o 72
Vg A\ Tano (72)

where 4% = u3, A = A, when @ = 0.
The results given by equations (71) and (72) would be formally equivalent
with Taylor’s results, when a =%. However, the corresponding corre-

lation function f which is given in fig. 3 as caleulated by numerical inte-
gration from the integral obtained by integrating (66) by parts is very

J=)

1-0

A
WA\

02

]

o=
s “9&
0 8 6 4 2 0 2 4 6 8 10X
Fia. 3

different from those measured by Simmons in such cases, in which Taylor’s
linear law of the decay of turbulence apparently holds. Hence the coin-
cidence between these equations and Taylor’s result is rather formal. We
come back to this question in the last section of this paper. The correlation

function f corresponding to o = } (see equation (67)) is also included in fig. 3.
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11— Possible solution for large Reynolds numbers®

. It was seen that if the triple correlations are neglected the double corre-
lation function f(r) is determined for all times ¢ > ¢, provided f(r) is known
for ¢ =t,. In the general case df/dt depends also on the triple correlation
function A(r). Now a further equation can be obtained from the equations
of motion for oh/ot; however, this new equation contains terms with the
quadruple correlations and so on. Hence, for an arbitrary value of the
Reynolds number the problem is too complicated for analytical treatment.

However, certain interesting results can be obtained for the limiting
cage of very large Reynolds numbers under the assumption that the
correlation functions f(r,t) and A(r, ¢) are independent of viscosity with the
exception of small values of the distance r. Let us consider the problem of
turbulence created by passing a uniform windstream through a grid or
similar turbulence-producing device and let us assume geometrically similar
arrangements. Then, denoting the mean velocity of the windstream by U
and & characteristic linear dimension of the device mentioned by M, it
seems evident by dimensional considerations that f has the form

. 2‘)

Joty M M)
If the correlation functions are—according to the above assumption—
independent of viscosity, this means that f(r, ¢) does not depend on the

variable y = ﬁ and is only a function of the variables »/M and Ut/M.

Let us now assume in addition that the correlation functions preserve their
shape and only their scale is changing. Obviously this assumption amounts
to the statement that both f(r, ¢) and h(r, t) are functions of one variable
¥ = r/L only, where L is a function of M and Ut.

It must be noticed that both assumptions—namely that the corre-
lation functions are independent of y and that they preserve their shape—

shall be made only for large values of ¥ = th’t_)
Then introducing f(¥) and A(y') in equation (51), we obtain the following

expression: ‘
df urdLl  du®  (udi(dh 4h\ WP (df 4 q
VT a T (@) = v Gl ) o

L2
* This section was inserted by the senior author in Sept. 1937, especially after
reading G. I. Taylor’s contribution (1937%).
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iy
Let us consider the quantity —t—L ‘a8 the Reynolds number related to

the problem, then for large values of this number it appears justified to
neglect the term on the right side. Furthermore, according to (55)
du? u?

VT

Hence, from (73) it follows that

df  u?dL 10Vuz dh 4k (ua)
~wlTa e (dw 1//')

Obviously equation (74) can be satisfied only when the coefficients which
are functions of ¢ without being functions of ¥, are proportional, i.e. their
ratios are constants. Hence

= 0. (74)

Ve
v (75)
%’ = BV, (16)

where 4 and B are numerical constants.

We easily obtain from (75) and (76) a differential equation for L(t). We
2 - — —
substitute in (75) from (65) /\7 = — 10u? / 4 u? and eliminate 2 from (75)

di
and (76). Thus we obtain

aE = "AB\@t ()
The general solution of (77) is
5
¢\5+4B
L= LO(I +t—) , (78)
0

where L, and ¢, are arbitrary constants. The origin of the time ¢ being

arbitrary, we may write
5

t\5+4B
L = LO % . (79)

Introducing the expression (79) in (76) we obtain by differentiation

_5
3+4B |

= 5 ¢
2 — . -
ut = 5+ABL°<t0) £ (80)
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or denoting the value of Vatatt = ty by \/uz?,

-4B ‘
=  =[t\5+4B
Nu? = «/u%(—t—) i (81)
b
, 25
Finally from (55) A2 = (5+:‘1_1§) vl. (82)

. ! 25 . .
1t is seen that equations (81) and (82) with 2= 5+Z~B are identical

with the corresponding equations (69) and (71) obtained in § 10 for the case
of the small Reynolds number. '
There is one case which is not included in equation (77), namely when

o A2 = ld 5.
L = const. say L = Ly. Then from (75) with 5 =" 5+/u? (-{t-s/u it follows
that

|~

5

ALt (83)

f

~n

Vu
and A% = 5ut. (84)

Let us compare the results obtained with the researches of Taylor and
Dryden. Our last equations (83) and (84) are identical with Taylor’s results;
especially if we assume with Taylor that L, is proportional to M, which is
in this case evident from dimensional consideration. However, Taylor
does not have the solutions (81) and (82). The reason is that Taylor found
the equation (75) with a remarkable vision for the relations between the
quantities involved; however, instead of (76) he assumed L proportional
to M, i.e. a fixed ratio between the scale of turbulence and the linear size
of the turbulence-producing device,

In both cases—using Taylor’s assumption or our broader relations (73)
and (76)—the theory leads to the conclusion that the scale and distribution
of turbulence in a windstream is independent of the speed of the wind-

stream and so is the ratio U/vu? measured at a certain distance @ from the
grid. The difference is that according to our theory the scale of turbulence
may increase downstream, while according to Taylor's assumption, it
remains unchanged. Instead of L = const.x M, we obtain in general
L = M x function of Ut/ M, and in the case of “‘self-preserving”’ turbulence
the function involved is proportional to a certain power of Ut/M. It appears
that further experimental results will decide whether Taylor’s assumptions
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are not too narrow and whether the equations (79) and (80) correspond more
closely to the experimental facts.

Tt is interesting that as far as the laws for the decay of turbulence and for
the spread of correlation curves are concerned, our analysis of correlations
leads essentially to the same results as the recently published theory of
Dryden’s (1937) which is based on entirely different conceptions. It appears
that the next step in the development of the theory should be to find the
physical mechanism which is behind the mathematical relations (75)

and (76), especially the mechanism which tends to increase the scale of
turbulence without the action of the viscosity.
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The spectrum of turbulence
By G. I. Tayror, F.R.S.
(Received 1 December 1937)

When a prism is set up in the path of a beam of white light it analyses the
time variation of electric intensity at a point into its harmonic com-
ponents and separates them into a spectrum. Since the velocity of light for
all wave-lengths is the same, the time variation analysis is exactly equivalent
to a harmonic analysis of the space variation of electric intensity along the
beam. In a recent paper Mr Simmons (Simmons and Salter 1938) has shown
how the time variation in velocity at a field point in a turbulent air stream
can be analysed into a spectrum. In the present paper it is proposed to
discuss the connexion between the spectrum of turbulence, measured at
a fixed point, and the correlation between simultaneous values of velocity
measured at two points.

If u, the component at a fixed point of turbulent motion in the direction
of the main stream in a wind tunnel, is resolved into harmonic components
the mean value of u® may be regarded as being the sum of contributions from
all frequencies, If u? F(n)dn is the contribution from frequencies between
n and n+dn, then '

wa(n)dn -1, (1
0 )

If F(n) is plotted against n, the diagram so produced is a form of the
spectrum curve.

100
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The proof that u2 may be regarded as being the sum of contributions from
all the harmonic components has been given by Rayleigh, using a form of
Parseval’s theorem, If 4 = ¢(f) and

O \
I = 7—7.[_‘ o(t) cosxtdt,'

| fre '
I, = ;f_wd)(t) sin ktdt.

Rayleigh showed that

4w o
[“rowrd=a| e sy, 3)

9 0

or if k = 2mn, so that n represents the number of cycles per second,

—w 0

+ ©
[ word =2 an. (4)

If the integrals on the right-hand side of (2) and the left-hand side of (3)
are taken over a long time T instead of infinity the left-hand side of (3) is

T'u?, so that
- «© 2 2
2= o2 f Lt (-1—%,13) dn. (5)

n+ 13
T
arises from the components of frequency between n and n+dn, i.e.

The quantity 272 Lt (

) is therefore the contribution to %2 which
T—>wo

0 B+13\
27 TI;tw(——T——) = F(n). (6)

CONNEXION BETWEEN SPECTRUM CURVE AND CORRELATION CURVE

Now consider two cases: (@) where the variation in % is due to eddies of
small extent which are carried by a wind stream of velocity U past the fixed
point; (b) the variation is due to large eddies carried in the wind stream. In
case (@) the fluctuations at the fixed point will be much more rapid than
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they are in case (b). The spectrum analysis in case (b) will therefore show
greater values of F(nr) for small values of n than in case (a).

It is clear when the eddies are large the correlation B, between simul-
taneous values of % at distance x apart must fall away with increasing @
more slowly than when the eddies are small. One may therefore anticipate
that when the (R,, ) curve has a small spread in the « co-ordinate the F(n)
curve will extend to large values of % and vice versa.

If the velocity of the air stream which carries the eddies is very much
greater than the turbulent velocity, one may assume that the sequence of
changesin u at the fixed point are simply due to the passage of an unchanging
pattern of turbulent motion over the point, i.e. one may assume that

u=90=#(5). ™

where x is measured upstream at time ¢ = 0 from the fixed point where u is
measured. In the limit when «/U— 0 (7) is certainly true. Assuming that
(7) is still true when %/U is small but not zero, R, is defined as

#04(1+5)
w
We now introduce another expression analogous to (3). It can be shown
that*

fj:gb(t) ¢(t+ l—”]) dt = 22 f :(Ig+ 13) cos —2%“—”@, ()

where I, and I, have the same meaning as in (3).
Substituting for 1% + I3 from (6), (9) becomes

x
w04+ 5)
——?_—i = f F(n)cos 27mwdn; (10)
u? 0 U
hence from (8) R, =wa(n) cos 27gwdn. (11)
. 0 .

It will be noticed that the form of (11) is very similar to that of the Fourier

* This formula can be deduced from the theorem 9:09 given on p. 70 of Norbert
Wiener’s The Fourier Integral, Camb, Univ, Press, 1933.
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integral. The Fourier integral theorem is usually expressed by the pair of
formulae

1+
1) = S |- oty cos e, (12)
1 [+ |
glpu) = :/—2%[“ oof(:t:) cos uxdx. (13)
When f(x) is symmetrical, so that f(x) = f(— ), (12) and (13) may be written
16 = [ | "oty cos s, (14)
g(u) = J;f:f(x) cos pd. 15)

Comparing (11) and (14) it will be seen that if

N R 1

then (11) and (14) are identical.
Making these substitutions in (15), the following expression is found

for P(n):

4 [« 2mnx
Fn) = ﬁfo R, cos T dz. (16)
UF(n) .
It seems therefore that R, and EN are Fourier transforms of one

another.
If F(n) is observed we can calculate R, using (11), and if R, is observed

we can calculate the spectrum curve F(n) using (16).

COMPARISON WITH OBSERVATION

Measurements have been made by Mr L. F. G. Simmons of E, and of
F(n) at a point 6 ft. 10 in. from a turbulence-producing grid with a mesh
3 x 8 in. at wind speeds U = 15, 20, 25, 30 and 35 ft./sec. It was found that
except very close to x = 0, B, is nearly independent of U within that range.*
When R, is independent of U it will be seen from (16) that U F(n) must be
a function of n/U.

Accordingly Mr Simmons’ measurements of F(n) for all values of U have

* A gimilar result has been obtained by Dryden, N.A.C.A. report 581, 1937.
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been plotted on the same diagram (figs. 1 and 1a), in which the ordinates are
UF(n) and the abscissae are n/U. The fact that the points fall so closely
on one curve is very satisfactory evidence that the measurements of F(n)
are accurate,
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Mr Simmons’ measurements of B, are shown in fig. 2, The values of F(n)
calculated using the measured values of B, in (16) are shown in fig. 1, but
as the points corresponding with the lower part of fig. 1 are rather close
together an enlarged version is shown in fig. 1a. The values of R, calculated
using the measured values of F(n)in (11) are shown in fig. 2.

It will be seen that the agreement in both cases is good.

10
9
6
® Observed (Rifig4)
o ® - J":’ F(n)cos 2%‘Q‘dn
4
2
0
2 4 6 8
z (ins.)
Fic. 2

It has been seen that the points in fig. 1 seem to fall on one curve, as is
predicted by (16), when it is assumed that R, is independent of U. On the
other hand it is known that the curvature of the R, curve at its vertex is not
independent of U, This curvature is defined (Taylor 1935) by means of a

length A, where
1 1-R
— =2 Lt z]. 17

/\2 m—>0( a? ) ( )

If the turbulence is isotropic experiments show that A is proportional to U~
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To find what effect this variation in A with U may be expected to produce
in the F(n) curve, A may be expressed in terms of F(n). When » is small

. 27202,
co's_—2-751—a‘ may be replaced in (11) by 1 _iU%’i . Hence
1 dp?fe | :
e . 18
E= TR fo niF(n)dn (18)
Since (18) can be written in the form
1 © p2 dn
Zo—ap| X an 1
IO 4 , T UF(n) 7 (19)

A must be independent of U if the {UF(n), n/U} curve is independent of U.
This deduction is inconsistent with the observed fact that A is proportional
to U-t, :

The explanation of this apparent discrepancy is that the value of

f wﬁF(n)dn depends chiefly on the values of F(n) for large values of n,
0

i.e. on the parts of figs. 1 and 1a where the points are so close to the axis that
variations in their height above it are hardly visible. In fig. 3 the vertical
scale of UF(n) has been enlarged very greatly. It will be seen that above
n/U = 16 the UF(n) curves separate, that for U = 15 ft./sec. falling below
those for 20 and 35 ft./sec.

CALCULATION OF A FROM THE SPECTRUM CURVE

To determine A from the spectrum curve the integral (19) must be
evaluated using the values of U F(n) taken from figs. 1 and 3. It is instruc-
tive to tabulate the contributions to this integral which arise from various
ranges of n/U. These are set forth in Table I, where they are expressed in
ft.-sec. units. It will be seen that when U = 35 about half of the integral
is due to components for which n/U > 30, in spite of the fact that the highest

0 52
TaBLE I. CONTRIBUTIONS TO ﬁéF(‘"’) dn EXPRESSED
0

IN I'T,-SEC. UNITS

nfU U=15 U=20 U=35
0-16 240 24-0 24-0
17-30 77 190 23-9

31-w 0 155 444

Total 317 58:5 923
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value of F(n) in this range is only 535 of its maximum value (namely 0-36
when 7=0). The value of A in feet is found by inserting the numbers given
at the foot of Table I for the integral in (19). Thus when U = 35 ft.[sec.
A = (472 x 92-8)~ = 0:00165 ft. = 0-50 cm. The values of A so calculated
are given in column 2, Table II.

o0-ol
o]
a
URn
£ © U = IS FTpea Sec.
X uU=20 .
B U-3 .
2&
° © 20 N fre 30 40 50 60
U
Fig. 3

VALUE OF F(n) AT n =10
Putting = 01in (16)
VLR )yeo = 4 ot
0
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By numerical integration of the measured R, curve in fig. 2 it is found that

f R dx = 1-07in. = 0-089 ft.,
0

so that, when n = 0,
U[F(n)],—o = 4 x 0-089 = 0-35 ft.

This upper limit is marked in fig. 1.

PROOF THAT TURBULENCE IS ISOTROPIC

Though the theory and measurements so far discussed do not involve any
assumption as to whether or not the turbulence is statistically isotropic,
yet since the theory of isotropic turbulence has been discussed so com-
pletely it is worth while to describe measurements which prove that the
turbulence was in fact isotropic.

It has been shown by Kérmén (1937) that when turbulence is isotropic
there is a definite relationship between the correlation curves R, and R,.
Kérmén defines two correlation functions R, and R,. R, is the correlation
between components of velocity along the line 4 B, where 4 and B are the
points at which the velocities are measured, R, is the correlation between
components at right angles to 4B. In isotropic turbulence R, and R, are
functions of  only where r is the length 4 B. When correlation measurements
are made in & wind tunnel by means of a hot wire, only the component
parallel to the length of the tunnel produces any appreciable effect on the
hot wire. If therefore 4 and B are situated on a line parallel to the mean
wind stream the correlation R, is identical with Kérméan’s B;. If 4 and B
are situated on a line perpendicular to the stream the correlation R, is
identical with Karman’s R,.

Karmaén’s relationship between R, and R,, namely

dR
R, = R1+%7'd_,,1,

(20)
is therefore a relationship between the correlations R, and B, which have
been measured. The measured values of R, or R, are given in fig. 2, and they
are repeated in fig. 4. To this curve the (negative) values of 3r(dR,/dr) are
added and the calculated values of R, or R, thus obtained are shown in
fig. 4. The values of B, measured by Mr Simmons at 6 ft. 10 in, behind a
3 x 3in. grid are also shown in fig. 4. It will be seen that Kérmdin’s relation-
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ship (20) is very well verified, and it may fairly be concluded that the
turbulence at 6 ft. 10 in. behind a 3 x 3 in. grid in a wind tunnel is isotropic.

+1-0
+0-8 t
Ri 4Rz ® O0BSERYED (N.P.L)
Rz X cALcuLaTeD, (Re R+ 4R!
+0'6 —
R Rz )X OBSERVED & CALCULATED
8 Rz COINCIDING.
+0-4]
+02
Ri
Rz
0 \
~0-08
0 20 40 6-0
¥ INCHES
Fic. 4

CALCULATION OF A FROM MEASURED RATE OF DISSIPATION OF ENERGY

In the case of isotropic turbulence A can be found by measuring the rate
of dissipation of energy. This can be found by measuring the rate of decay
of the mean kinetic energy of turbulent motion.

Fig. 5 shows the measured values of Ufu', (4’ = \Ju?), in the air stream in
which F(n) and R, were measured. It will be seen that in this case Uju’
increases linearly* with a, the distance down stream from the grid. I have
shown (Taylor 1935) that Ufu’ increases linearly with x when A satisfies

the following relationship:
A v
=4 (21)

* This is not a general law. Cases where U/u’ does not increase linearly have
been observed.
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where M is the mesh size of the grid producing the turbulence. Conversely,
when U Ju' increases linearly with 2, A must be related to u' by the equation
(21). By measuring the slope of the line which passes through the observed
points in fig. 5, I find that A4 in (21) is 2:12. At the point where the spectrum
measurements were made, 6 ft. 10 in. from the grid, U/u’ = 33:5. Since
M = 3in. = 7:62 cm, and v = 0-148, (21) becomes

. . .62
A=2'12,\/335x0148x7 om

u .
80
70
)
y” V/
o p
7
} T_‘TA 12R
40
i
w .
/
[ 15

5 10
DISTANCE FROM GRID (FT)
Fia. 6

The values given in column 3, Table 11, are calculated from this formula..
Comparing the values of A calculated from the measured dissipation
(column 3) with those calculated from the measured spectrum curves using
equation (18) (column 2), it will be seen that the agreement is fairly good.

TasrLe II. VALUES oF A

A calculated from A caleulated from
U ft.[sec. spectrum curves observed dissipation
15 0-86 cm. 0-61 cm.
20 063 0-53
36 050 040

CORRELATION MEASURED WITH BAND FILTER CIRCUITS

Recently Dryden (1937) has made measurements of B, using various band
filter circuits in his amplifier. The action of the band filter is to cut out all
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disturbances except those whose frequencies lie between certain limits.
By supplying truly sinusoidal disturbances of known frequency and
amplitude to the filter circuit the characteristic curve showing the response
of the circuit to unit input were obtained. If ¢(n) is the ratio of u® measured
with the filter to 4% measured without it, the characteristic curve {¢(n), n}
for one of Dryden’s circuits which passes frequencies between 250 and 500
cycles is shown in fig. 6. The measured values of R, using this filter circuit
and with wind speed U = 20 ft./sec. are shown in fig. 7.

s A
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o

' Finy B
-_’,é(n) / \F(ﬂ) @) ‘

N\
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Fig. 6
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P

We have already seen how R, is related to F(r). It is clear that the same
relationship will still hold when the filter circuit is inserted, but #(n) must
now be replaced by

) $(n)

F(n
j:FUﬂ¢Oan.
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If R,  is the value of B, measured with the band filter circuit ¢, the
formula analogous to (11} is

f F(n)d(n) cos "% i

B, = i (22)
j Pn) p(n
-0
05|
Rx¢ | //X_\
o ¥ +
\ X OBSET VED (oayn#u)
™ +  CALCULATED.
—-05 . 7'\‘“ /\
+
_I'oo ‘5 10 xcm I5 20 25 30
Fia. 7

Before this formula can be used in comparison with Dryden’s observed
values of B, it is necessary to find F(n). Dryden has not measured F(n)
except very roughly, but he has measured R, in the same air stream and
without the filter circuit. His measurements are shown in fig. 8. To calculate
F(n) we may use the expression (16) with the observed R,. The values of

gF(n) so found is also shown in fig. 8. Taking the values of F(n) from a

smooth curve through the calculated points, the values of F(n) ¢(n) together
can be found for any given values of U and m by multiplying the ordinates
of the F(n) and ¢(n) curves. The values of F(n)@(n) at U = 20 ft./sec.
(=610 cm.gec.) found in this way are shown in fig. 6.

Using a series of values of x, the values of R, have been calculated by
numerical integration of (22). The values so calculated are shown in Table
IIT, and are marked in fig. 7. It will be seen that the agreement with Dryden’s
observations is very good. This agreement provides additional evidence in
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U
2.\2n
transforms of one another, so that each can be predicted when the other
has been measured.

favour of the main thesis of this paper that R, and F(n) are Fourier

TABLE III—CALCULATED VALUES OF R,
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BEARING OF SPECTRUM MEASUREMENTS ON THEORY OF DISSIPATION

The fact that the {UF(n), n/U} curve is independent of U over nearly the
whole range indicates that the turbulent flow at a fixed point behind a
regular grid is similar, so far as the main features of the flow are concerned,
at all speeds. On the other hand the fact that small quantities of very high
frequency disturbances appear, and increase as the speed ipcreases, seems
to confirm the view frequently put forward by the anthor that the dissipa-
tion of energy is due chiefly to the formation of very small regions where the
vorticity is very high. Apart from these very small regions the turbulence
behind a grid is similar at all speeds,
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SUMMARY

It is shown that a definite connexion exists between the spectrum of the
time variation in wind at a fixed point in a wind stream and the curve of
correlation between the wind variations at two fixed points. The spectrum
curve and the correlation curve are, in fact, Fourier transforms of one
another.

As an example of the use of this relationship the spectrum of turbulence
in an American wind tunnel was calculated from measurements of correla-
tion by Dryden. In some further experiments Dryden modified this spec-
trum by inserting a filter circuit and then measured the correlation with
this filter in circuit. The modified spectrum is here calculated from the
filter characteristics and the Fourier transform theorem is used to cal-
culate the modified correlation curve. The agreement with Dryden’s
measurements is very good indeed, ’

The paper ends with some remarks on the bearing of the spectrum
measurements on the theory of dissipation of energy in turbulent flow.
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A REVIEW OF THE STATISTICAL
THEORY OF TURBULENCE*

BY

HUGH L. DRYDEN
National Bureau of Standards

1. Introduction, The irregular random motion of small fluid masses to
which the name turbulence is given is of such complexity that there can be
no hope of a theory which will describe in detail the velocity and pressure
fields at every instant. Existing theories may be classified as either empirical
or statistical.

In the empirical theories attention is focused only on the distribution of
mean speed and mean pressure, and assumptions are made as to the depend-
ence of the shearing stresses required to satisfy the equations of motion of
the mean flow. These assumptions involve one or more empirical constants.
While the type of assumption adopted is often selected on the basis of some
hypothesis as to the character of the fluctuations of speed and pressure, the
theory rests on the final assumption rather than on the hypothesis as to the
fluctuations. The various “mixing length” theories are of this type.

In the statistical theories consideration is given to the frequency distribu-
tion and mean values of the pressure and of the components of the velocity
fluctuations, i.e. to the statistical properties of the fluctuations, and to the
relation between the mean motion and these statistical properties.

Some attempts have been made to apply the methods of statistical me-
chanics of discrete particles. In all such attempts it is necessary to select cer-
tain discrete elements ccrresponding to the particles, and to make some
assumption as to the probability of occurrence of various values of associated
properties or more directly the frequency distribution of the associated prop-
erties. Difficulties are encountered at both points. The best known theory of
this type is that of Burgers' who selected as elements in two-dimensional
flow the points in a square network of equally spaced points and as associated
property the value of the stream function. This theory has not as yet led to
useful results and is not satisfactory to Burgers himself. Other attempts of

* Received Nov. 19, 1942,

1 Burgers, J. M., On the application of statistical mechanics lo the theory of turbulent
fuid motion, I to VII, inclusive, Verh. Kon. Akad. v. Wetensch, Amsterdam 32, 414, 643, 818
(1929); 36, 276, 390, 487, 620 (1933). Summarized by Trubridge in Reports Phys. Soc. Lon-
don, 1934, p. 43.
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this nature have been made by von Kérmén,? Noether,* Tollmien,* Gebelein,?
Dedebant, Wehrlé and Schereschewsky,® and Takahasi.”

Many of the statistical theories just mentioned do not require the turbu-
lent fluctuations to satisfy the equations of motion nor do they require the
fluid motion to be continuous. A statistical theory of turbulence which is
applicable to continuous movements and which satisfies the equations of mo-
tion was inaugurated in 1935 by Taylor® and further developed by himself
and by von Kérmén.® It is the object of this paper to give a connected ac-
count of the present state of this particular statistical theory of turbulence.

2. Turbulent fluctuations and the mean motion. As in other theories of
turbulent flow, the flow is regarded as a mean motion with velocity compo-
nents, U, V, and W, on which are superposed fluctuations of the velocity with
components of magnitude %, v, and w at any instant. The mean values of «, v,
and w are zero. In most cases U, V, and W are the average values at a fixed
point over a definite period of time, although in certain problems it is more
convenient to take averages over a selected area or within a selected volume
at a given. instant. The rules for forming mean values were stated by Rey-
nolds!® and some further critical discussion by Burgers and others has been
recorded in connection with a lecture by Oseen." :

When the turbulent motion is produced in a pipe by the action of a con-
stant pressure gradient or near the surface of an object in a wind tunnel in
which the fan is operated at a constant speed, there is considerable freedom

* Kérmén, Th. von, Uber die Stabilitit der Laminarstromung und die Theorie der Turbulens,
Proc. 1st Inter. Congr. Appl. Mech., Delft, 1924, p. 97,

* Noether, F., Dynamische Gesichispunkie su einer statistischen Turbulsnstheorie, Z. angew.
Math. u. Mech. 13, 115 (1933).

¢ Tollmien, W., Der Burgersche Phasenraum und einige Fragen der Turbulenzsialistik,
Z, angew, Math. u. Mech. 13, 331 (1933). Brief abstract of this paper entitled, On the tur-
bulence statistics in Burgers' phase space, Physics, 4, 289 (1933).

b Gebelein, H., Turbulcns: Physikalische Statistik und Hydrodynamik, Julius Springer,
Berlin, 1935,

¢ Dedebant, G., Wehrl¢, Ph,, and Schereschewsky, Ph., Le maximum de probabilité dans
les mouvements permanents, Application d la turbulence, Comptes Rendus Ac. Sci. Paris 200, 203
(1935). Also Dedebant, G., and Wehrlé, Ph., Sur les équations aux valeurs probables d'un fluide
turbulent, Comptes Rendus Ac, Sci. Paris 206, 1790 (1938).

? Takahasi, K., On the theory of turbulence, The Geophysical Magazine 10, 1 (1936),

* Taylor, G. L., Statistical theory of- turbulence, 1-V inclusive, Proc. Roy. Soc, London
Ser. A, 151, 421 (1935) and 156, 307 (1936). Also, The statistical theory of 1sotropzc Lurbulence,
Jour. Aeron Sci., 4, 311 (1937).

* Kérmén, Th von, On the statistical theory of turbulence, Proc. Nat. Acad. Sci. 23, 98
(1937). Also The fundamentals of the statistical theory of turbulence, Jour. Aeron, Sci. 4, 131
(1937). Also with Howarth, L., On the statistical theory of isotropic turbulence, Proc. Roy. Soc.
London Ser. A, 164, 192 (1938).

10 Reynolds, O., On the dynamical theory of incompressible viscous fluids and the delermina-
tion of the criterion, Phil. Trans. Roy. Soc. London 186, 123 (1895).

1t Oseen, C. W., Das Turbulensproblem, Proc. 3rd Inter. Congr. Appl. Mech., Stockholm,
1931, vol. 1, p. 3.
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in selecting the time interval for which mean values are taken. So long as the
time interval is longer than some fixed value dependent on the scale of the
apparatus and the speed, the mean values are independent of the magnitude
of the time interval selected and there is a clear separation between the turbu-
lent fluctuations and the mean motion. If the mean motion itself is “slowly”
variable, as in the case of the natural wind, difficulty arises; the separation
becomes imperfect and arbitrary. The slowly variable mean may be taken
over time intervals of five minutes, one day, or ten years according to the
object of the study and the magnitude of the turbulent fluctuations varies
accordingly. Even in flows under constant pressure gradient, there will usu-
ally be some experimental difficulty in maintaining the conditions absolutely
constant, and the question will naturally arise as to how the fluctuations aris-
ing from this source may be eliminated from the “true” turbulent fluctuations.

3. Vortex trails, For a long time every flow in which “fast” fluctuations
of velocity occurred was regarded as a turbulent flow but experimental meas-
urements of fluctuations show several identifiable types. The experimental
results suggest the limitation of the term “turbulent fluctuation” to one of
these types characterized by the random nature of the fluctuations. This
random characteristic is in marked contrast with the regularity and periodic- -
ity noted in a second type of fluctuation associated with vortex trails.

It is well known that when a cylinder or other object of blunt cross section
is exposed to a fluid stream, a vortex trail appears under certain circum-
stances, vortices breaking away with a regular periodicity. The speed fluctua-
tions observed in the trail are periodic and in themselves do not produce
turbulent mixing. At comparatively short distances the regular pattern trans-
forms into an irregular turbulent motion, but the fluctuations within the trail
itself do not have the character of the final turbulent fluctuations.

The fluctuations of turbulence are irregular, without definite periodicity
with time. The amplitude distribution corresponds to the Gaussian distribu-
tion, i.e, the number of times during a long time interval that a given magni-
tude of fluctuation is reached varies with the magnitude according to the
“error” curve.

If this randomness is regarded as an essential feature of the turbulent
fluctuations, turbulence is not equivalent to any regular vortex system how-
ever complex. The equivalent vortex picture is a large family of vortex sys-
tems, whose statistical properties only, not individual histories, are significant,

4. Space and time averages, The speed fluctuations #, v, and w, though
designated the fluctuations at a point, are in reality averages throughout a
certain volume and over a certain time as are the speed components in the
usual hydrodynamic theory. The volume is small in comparison with the
dimensions of interest in the flow but large enough to include many mole-
cules, A cube of size 0.001 mm, containing at atmospheric pressure about
2.7 X107 molecules, satisfies this condition. The time interval is short in com-
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parison with any time interval of interest in the mean properties of the flow
but long in comparison with the time required for a molecule to traverse the
mean free path, The number of collisions at atmospheric pressure is of the
order of 5X10° per second and hence a time interval of 10~ seconds would
suffice. '

No instruments have yet been constructed to give values averaged over
so small a volume or so short a time interval. The best performance obtained
to date is that of hot wire anemometers which have been developed to the
point where average values over a cylindrical volume perhaps 0.01 mm in
diameter and 1 mm long and over a time interval of approximately 0.5 X107
seconds can be obtained. Experimental results show that averages over these
space and time intervals are not appreciably different from those for some-
what larger space and time intervals and suggest that averages over smaller
intervals would not be appreciably different. The results also suggest that
measuring equipment that does not approach these space and time intervals
gives results which largely reflect the properties of the measuring instrument
rather than the properties of the turbulent fluctuations. In other words the
measurement is that of a variable mean velocity over space and time intervals
fixed by the characteristics of the instrument, rather than measurements of
the turbulent fluctuations. If the frequency spectrum of the turbulent fluctua-
tions is known, the effect of the instrument characteristics can be estimated,
as discussed in section 19,

5. Pulsations. Reference has previously been made to the difficulty in
certain cases of making a clear separation between the mean motion and the
turbulent fluctuations, because of the difficulty of defining a time interval
long enough to include many fluctuations but small enough so that the mean
varies only slowly. The difficulty is often increased by the presence of a fairly
rapid variation of the mean speed over large areas, perhaps the entire cross
section of the fluid stream, to which the name pulsation may be given. Sucha
fluctuation is recognizable by the fact that there is a regularity in the space
distribution of the fluctuations such that definite phase relations exist. Pulsa-
tions have been observed in laminar flow in boundary layers. An essential
characteristic of the turbulent fluctuations is an irregularity and randomness
in the space distribution as well as in the time distribution,

It is often possible to eliminate the effect of pulsations on the measure-
ments by a low frequency cut-off in the equipment for measuring «, v, and w.
The choice of the cut-off frequency is equivalent to a selection of the time
interval over which averages are taken to obtain the mean speed and by this
device the pulsations are regarded as variations of the mean speed.

6. Continuity of the turbulent motion. It is well known that the structure
of a fluid is in the final analysis discontinuous, the fluid consisting of individ-
ual molecules. Nevertheless the usual hydrodynamic theory regards the fluid
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as a continuum. Such an assumption can be justified when the dimensions
of the flow system are very large compared to the mean free path of the
molecules. The velocity of the fluid at any point is then defined as the vector
average of the velocities of the molecules in a small volume surrounding the
point, the value obtained being independent of the magnitude and shape of
the volume within certain limits,

Some investigators'? have concluded that the phenomena of turbulence
require the assumption of discontinuity in the instantaneous components.
The Taylor-von Kérmén statistical theory retains the assumption that the
fluctuations are continuous functions of space and time as in Reynolds’ theory.

The applicability of this assumption is a matter for experimental determi-
nation. If experimentally a volume and time interval can be selected which
may be regarded as large in comparison with molecular distances and periods
but small as compared to the volumes and time intervals of interest in the
turbulent fluctuations, the fluctuations may be safely regarded as continuous.
As described in section 4, the experimental data perhaps do not prove but do
‘definitely suggest that such a choice is possible and to that extent the as-
sumption of continuity is experimentally justified.

.'7. The Reynolds stresses. If in the Navier-Stokes equations of motion the
components of the velocity are written as U+w#, V-9, W+w, thus regarding
the motion as a mean motion U, V, W, with fAuctuations %, v, w superposed,
and mean values taken in accordance with the rules mentioned in section 2,
a new set of equations is obtained which differs from the first only in the pres-
ence of additional terms added to the mean values of the stresses due to vis-
cosity. These additional terms are called the Reynolds stresses or eddy
stresses. The eddy normal stress components are -—pu2 —pv2 —pw? and
the eddy shearmg stress components are —puy, —pvw, —puw. Each stress
component is thus equal to the rate of transfer of momentum across the cor-
responding surface by the fluctuations.

In the light of kinetic theory the eddy stresses closely parallel in origin
the viscous stresses. It has been explained how #, v, and w are themselves the
mean speeds of many molecules. The effect of the molecular motions appears
in the smoothed equations of the continuum as a stress, the components of
which are equal to the rate of transfer of momentum by the molecules across
the corresponding surfaces.

8. Correlation. If the fluctuations were perfectly random, the eddy shear-
ing stress components —pup, —pvw, —puw would be zero. The existence of
eddy shearing stresses is dependent-on the existence of a correlation between
the several components of the velocity fluctuation at any given point. The
coefficient of correlation between # and v is defined as

2 Rampé de Fériet, J., Some recent researches on turbulence, Proc. Fifth Inter. Congr.
Appl. Mech,, Cambridge, Mass.,1938, p. 352.
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Ryy= ——F=" (8.1)
VI
The mean values v/a#, /%%, and \/u? are often called the components
of the intensity of the fluctuations. i
The eddy shearing stress may be written in terms of the correlation coeffi-

cient as
— ptiv = — pRu NV U2 (8.2)

and similarly for the other components.

In addition to the correlation between the components of the velocity
fluctuations at a given point, the Taylor-von Kirmdn theory makes much
use of correlations between the components of the velocity fluctuations at
neighboring points. Denote the components of the fluctuations at one point
by w1, v1, wi, and at another point by #a, vs, wy. The coefficient of correlation
between u1 and vs is defined as

#1902

and similarly for any other pair. These correlation coefficients form useful
tools to describe the statistical properties of the fluctuations with respect to
their spatial distribution and phase relationships.

9. Scale of turbulence. The earliest attempt to describe the spatial char-
acteristics of turbulence was the introduction of the mixing length concept,
the mixing length being analogous to the mean free path of the kinetic theory
of gases, Logical difficulties arise because there are no discrete fluid particles
in the turbulent flow which retain their identity. A method of avoiding these
difficulties was suggested by Taylor® many years ago. He showed that the
diffusion of particles starting from a point depends on the correlation R; be-
tween the velocity of a fluid particle at any instant and that of the same par-
ticle after a time interval ¢ If the functional relationship between R, and ¢ is
of such a character that R, falls to zero at some interval 7" and remains so for
greater intervals, it is possible to define a length /1 by the relation:

T "
Iy = \/i?f Ryt = \/z'Tff Rt 9.1)
[} [

Ru,v, = (8~3)

in which v is the component of the velocity fluctuations transverse to the
mean flow and in the direction in which the diffusion is studied.

B Taylor, G. 1., Diffusion by continuous movements, Proc. London Math, Soc. Ser. A, 20,
196 (1921). '
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This method of assigning a scale to turbulence is of value in the study of
diffusion as described in section 22, It is based on the Lagrangian manner of
describing the flow by following the paths of fluid particles. It is more com-
mon to use the Eulerian description by considering the stream lines existing
in space at any instant. Taylor later?® suggested a method of describing the
scale in the Eulerian system based on the variation of the correlation coeffi-
cient Ry between the values of the component % at two points, separated by
the distance y in the direction of the ¥ coordinate, as y is varied. The curve
of R, against y represents the statistical distribution of # along the y axisat
any instant. If R, falls to zero and remains zero, a length L may be defined
by the relation:

L=f Rydy. (9.2)
0

The length L is considered a possible definition of the average size of the
eddies present and has been found to be a most useful measure of the scale
of the turbulence, especially for the case of isotropic turbulence. Correspond-
ingly, a length L, may be defined by the relation:

L,,=f R.dx 9.3)
0

where R, is the correlation between the values of the component % at two
-points separated by distance « in the direction of the x coordinate.

10. Isotropic turbulence. The simplest type of turbulence for theoretical
or experimental investigation is that in which the intensity components in
all directions are equal, More accurately, isotropic turbulence is defined by
the condition that the mean value of any function of the velocity components
and their derivatives at a given point is independent of rotation and reflection
of the axes of reference. Changes in direction and magnitude of the fluctua-
tions at a given point are wholly random and there is no correlation between
the components of the fluctuations in different directions. Thus u?=0%=1?
and w=vw=uw=0,

There is a strong tendency toward isotropy in all turbulent motions. The
turbulence at the center of a pipe in which the flow is eddying or in the natu-
ral wind at a sufficient height above the ground is approximately isotropic.
A grid of round wires placed in a uniform fluid stream sets up a more or less
regular eddy system of non-isotropic character which very quickly transforms
into a field of uniformly distributed isotropic turbulence.

The assumption of isotropy introduces many simplifications in the statis-
tical representation of turbulence. The two quantities, intensity and scale,
appear to give a description of the statistical properties of the turbulent field
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which is sufficient for most purposes. Turbulent fields of this type can readily-
be produced experimentally and studied. The intensity may be varied from
less than 0.1 to about 5.0 percent of the mean speed and the scale independ-
ently from a few mam to 25 mm.

11. Decay of isotropic turbulence. The kinetic energy of the turbulent
fluctuations per unit volume is equal to 3p(#?+4*+w?) which for isotropic tur-
bulence becomes (3/2)pu?. The rate of decay is therefore —(3/2)pd(u?)/dt. 1f
the isotropic turbulence is superposed on a stream of uniform speed U, we
may write d¢=dx/U and hence the rate of decay with respect to distance x
as —(3/2)p Ud(w?) Jdx.

In a fully developed turbulent flow the Reynolds stresses are proportional
to the squares of the turbulent fluctuations. The work done against these
stresses, which in the absence of external forces must come from the kinetic
energy of the system, is proportional to pu'*/L where «' is written for /u
and L is a linear dimension defining the scale of the system, which may be
taken as the L defined by (9.2). Equating the two expressions for the dis-
sipation and designating the constant of proportionality as 3 4, we find:

— (3/2)pUd('?) /dx = 3dpu'3/L (11.1)
or
Ld(U/w')/ds = 4. (11.2)
Integrating:
U — Ujud = A f dx/L (11.3)

where U/u{ is the value of U/u’ at a =x,. This equation has been found to
give a very good representation of the experimental data. The essential fea-
tures of the derivation were given by Taylor. To evaluate the integral, L must
be known as a function of . Taylor's first proposal was to assume that L is
independent of x and proportional to the mesh ) of the grid giving rise to
the turbulence, If L is constant,

U/w — U/ud = A(x — a0)/L A (11.4)

giving a linear variation of U/u’ with x. Assuming L/)M =k, Taylor found
values of 4 /k for data from various sources varying between 1.03 and 1.32.

¥ Dryden, H. L., Schubauer, G. B,, Mock, W, C,, Jr,, and Skramstad, H. K., Measure-
ments of intensity and scale of swind-tunnel turbnlence and their relation to the critical Rey-
nolds sumber of spheres, Tech. Rept. Nat. Adv, Comm. Aeron. No, 581 (1937),
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When measured values of L became available it was found that L in-
creased as x increased, the results being represented empirically within the ac-
curacy of the measurements by the relation L = L,+4c(x —x,), whence

U/w — U/ud = (4/c) log, [1 + c(x ~ x0)/Lo). (11.5)

Taylor®® found values of 4 for data from various sources varying between
0.43 and 0.19.

Further study suggests another relation for the variation of L with x.
A discussion of the general theory will be deferred until section 17 and the
question discussed on purely dimensional considerations. If one assumes that
du’ /dL, the rate of change of intensity, and dL/d¢, the rate of change of scale,
are determined solely by the values of L and #’, i.e. that viscosity and up-
stream conditions have no influence, it follows from dimensional reasoning
that

Ld(1/u")/dt

A4 and (1/u")dL/dt = B (11.6)
or

Ld(U/w')/dx =4 and (U/w')dL/dx = B 11.7)

I

where 4 and B are numerical constants. The first equation of each pair is
the same as equation (11.2); the second is a new relation.
Integration of equations (11.6) and (11.7) leads to the relations:

ud (4 + B)ud (x — xo)]4/<4+m
U 11.8
W [ " LU (11.8)
and
L (A4 + B)ug (x — x,,)]mm+3)
LU 11.9
Lo [ * LU (11.9)

where ud and Lg are the values at x =0.

If it is desired to introduce a reference dimension pertaining to the dimen-
sions of the grid producing the disturbance, this may be done, but according
to equations (11.8) and (11.9) any dimension may be used and the decay
does not depend on its value. The mesh distance M is often used but certain
results reported by von Kédrm4n'® show that if M/d is not too small, the use

% Taylor, G, 1., Some recent developments in the study of turbulence, Proc. Fifth Inter.
Congr. Appl. Mech., Cambridge, Mass., 204 (1938), See later detailed report of measurements
in Hall, A. A., Measurements of the intensity and scale of turbulence, Rept. and Memo, No.
1842, Aeronautical Research Committee, Great Britain (1938).

16 K4rmén, Th. von, Some remarks on the statistical theory of turbulence, Proc. Fifth Inter.
Congr. Appl. Mech., Cambridge, Mass,, 1938, p. 347. The grid dimensions are not given in
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of the wire diameter d as the reference dimension leads to a single curve for
all grids irrespective of the mesh-diameter ratio.

The available data are plotted in Figs. 1 and 2 from references in foot-
notes 14, 15, and 16. The solid curves are respectively

(U/4')? = 400[(1 + 0.04(x/d — 80)) (11.10)
and
(L/d)? = 0.264[(1 + 0.04(x/d — 80)] (11.11)
which are in the form of equations (11.8) and (11.9) with the constants
A =B=0.2056. These curves are frankly selected to fit the National Bureau
of Standards data.

If one considers the complete system of screen and turbulent field, dimen-
sional considerations suggest that'for geometrically similar screens whose
scale is fixed by some characteristic dimension, such as the mesh length M,
the ratios #’/ U and L/ M would be a function of x/ M, of the Reynolds Num-
ber UM /v and of the turbulence of the free stream %/ /U, in which the screen
is placed. If the screens are not geometrically similar but are made up of
cylindrical rods of diameter d, the intensity and scale also depend on d/M
and on the roughness of the screen. The effects of these parameters have not
been fully investigated, and doubtless a part of the discrepancy between the
available results is to be ascribed to the influence of these factors.

For example, the screens used at the National Bureau of Standards were
either woven wire screens or wooden screens with fairly rough surfaces with
the members interlacing in the wire screens and intersecting in the wooden
screens. The ratio d/M varied from 0.186 to 0.201. The screens used by Hall
were arranged in two planes, i.e., horizontal rods in one plane, vertical rods
just touching the horizontal rods but in another plane. The ratio d/M was
0.184 to 0.188. Von Kérmdn has studied the effect of varying d/M from 0.086
to 0.462 and has used screens both of the woven type (results published by
von Kérmdn, loc. cit.) and of the biplane type (results not published). A
study of these data suggests that the difference between the results for woven
screens and biplane screens is unimportant and that if results are plotted in
terms of x/d rather than x/M the effect of d/M is small for values of d/M
near 0.2, No data are available on the effect of roughness.

Few data are available on the effect of free stream turbulence. Hall ob-
tained an increase of about 10 to 20 percent in #’ for a 1-inch screen at the

the paper, but Professor von Kérméin has kindly supplied them as follows:
Mesh Distance, M Wire Diameler, d

Grid inches inches M/d
1 4.96 0.230 2.16
2 5.00 105 4.75
3 5.07 .084 6.03
4 4.99 043 11.6
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same value of ¥/ M by increasing the free stream turbulence from 0.2 percent
to 1.3 percent. We have had the opportunity of making some measurements
behind the same 1-inch screen used in the measurements described in NACA
Technical Report No. 581 in an airstream for which the free stream turbu-
lence is 0.03 percent as compared with 0.85 percent far the older measure-
ments. The results are shown in Fig. 3 as compared with Hall’s measurements.
It is obvious that the turbulence of the free stream is one of the controlling
factors, but not the only one.
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FiG. 3. Effect of free stream turbulence on the turbulence behind a 1-inch screen.

The study of the turbulent field behind screens as affected by numerous
parameters is of interest from the standpoint of a study of screens. However,
the turbulent field may be regarded from another point of view, i.e. in relation
solely to the theory of isotropic turbulence. If the turbulence is truly iso-
tropic, and if its characteristics can be adequately described by the two
quantities, intensity and scale, its behavior can depend only on the values
of intensity and scale at some given point. The details of construction of the
source screen and its distance upstream are of no importance. Even the in-
fluence of the turbulence of the free stream should be absorbed in the given
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values of #’ and L at some one point. The decay of isotropic turbulence is
considered from this point of view in section 17,

12. Effect of contraction. The behavior of turbulence in a contracting
stream is of interest in connection with the flow in the entrance cone of a
wind tunnel. Prandt]'? suggested that the longitudinal components of the
fluctuations were reduced in the ratio of 1 to ! where [ is the ratio of the en-
trance area to the exit area of the cone. This result was derived on the as-
sumption that the gain in energy is the same for all filaments traversing the
cone. The same result was obtained from the Helmholtz vortex theorem,
which was also used to show that the lateral components were increased in
the ratio +/I. Since the mean speed increases proportional to /, the values of
#'/Uand v’/ U are reduced according to this theory in the ratios 1 /l2and 1/+/]
respectively. This computation neglects the decay of the turbulence because
of viscosity.

Taylor!® computed the effect of a contraction on certain mathematically
defined forms of disturbance. Two objections may be offered to this treat-
ment, First, as in Prandtl’s treatment, the decay of the turbulence is neg-
lected. Second, the computation is made on a regular disturbance which is
assumed to retain its regularity, When the rapid development of an isotropic
turbulent field from a Kdrmén vortex trail is considered, it is hard to believe
that a regular vortex pattern could retain its character throughout the length
of a wind tunnel entrance cone unless the scale was very large indeed.

If it is assumed that the istropic turbulent field is unaffected by changes
in the mean speed, the decrease in %’ may be computed from the decay during
the time required for the fluid to traverse the cone. This time interval is
f:;dx/ U. If 4 is the area of the cross section at any value of x, U4 =Ud,
where Uy and A, are the values at x =x,, and hence the time interval is
f:;A dx/ UoA 0.

There are as yet no suitable experimental data for checking any theory,
In the measurements quoted by Taylor all the data were obtained sufficiently
close to a grid to lie within the non-isotropic turbulence of the vortex trails
from the individual wires.

13. The correlation tensor function., Von Karman'® introduced the cor-
relation tensor function in the statistical theory of turbulence as a generaliza-
tion of the particular correlation coefficients discussed by Taylor. The cor-
relation coefticients between any component of the speed fluctuation at a
given point and any component of the speed fluctuation at another point

Y Prandtl, L., Herstellung einwandfreier Luftsirime (Windkandle), Handbuch dec Experi-
mentalphysik, F, A Barth, Lenpzng, 1932, Vol. 4, Part 2, p. 73.

¥ Taylor, G. 1., Turbulence in a coniracting stream, Z. angew. Math., u. Mech. 15, 91
(1935)

¥ Kdrmén, Th. von, and Howarth, L., On the statistical theory of isolropic turbulence.
Proc. Roy. Soc, London, Ser. A, 164, 192 (1938)
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form a tensor. If one point is held fixed and the other varied, the tensor varies
as a function of the coordinates of the variable point with respect to the fixed
point. We may speak of this function as the correlation tensor function.
In isotropic turbulence the correlation tensor has spherical symmetry and
the several components are functions only of the distance 7 between the two
points, and of the time £. Denote by w, v1, w; and #a, vs, w2 the components
of the velocity fluctuations at the two points P, and P, having coordinates
(%1, 0, 0) and (3, 0, 0) respectlvely Suppose that ul, v, 'wf, wlnch by is 1sotropy
are equal, are independent of position and equal to %2, Then #2= v2 wh = ul,
The correlation coefficients v;v2/%2 and wyw./#2 will be identical because
of isotropy and will be some particular function of the distance r between

Z

Y

Fic. 4,

P; and P; and of the time ¢, say g(r, £). The correlation coefficient iz Wt

will also be a_ fl_JE_c_tion of r and ¢, say f(r, #). The correlation coefficients
Thus lf the ¥V and Z axes are rotated about the X axis through 180°, the ab-
solute values of all components are unchanged but the signs of the v and w
components are reversed. Denoting values referred to the new axes by capital
letters, Ur=m1, Ua=ua, Vi=—u, Va=—t5, Wi=wy, W= —w,, so that, for
example, U, Va= —ut2. But by isotropy, the value of any function of the
components is unchanged by rotation of the axes, and therefore Uy Va=uvs.
To satisfy both relations #,#; must equal zero. Similarly for the other terms
containing %; or #s. By reflection in the XZ plane v,w; and wy; may likewise
be shown to be zero.
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The correlation coefficient for components of the fluctuations in any arbi-
trary directions at any two points may be expressed in terms of the functions
f(r, t) and g(r, t) and the geometrical

w, f(n,t) u, parameters, Consider any two points

> » Pand Q and components of the fluc-

— n > tuations p in the direction PP’ at P
and ¢ in the direction QQ’ at Q. (Fig.

. , 4). Denote by QQ’/ the orthogonal

U, projection of QQ’ on the plane PP'Q;
by «, 8, and vy the angles P'PQ,
7—PQQ", and QQ’'Q’’;and by £y, P,
ps and q1, g2, g5 the components of the
fluctuations at P and Q ip the direc-

n (n,t) . . L,
3 ! tion PQ, in the direction normal to
PQ and Q’Q’/, and in the direction
Q’’Q’. Then
P =pi1cos a4 pasina
J W ¢ = ¢1 cos B sin ¥ 4 ¢ sin g sin v
F1G. §. The principal double correlations + ¢s cos v, (13.1)
in isotropic turbulence,
Hence
P9 = P1g1 c0s & cos @ sin y + Pags sin 8 sin « sin (13.2)

the other terms vanishing as proved in the preceding paragraph. In terms
of f(r, ¢) and g(r, ¢)

2q/4* = [f(r, 2) cos & cos 8 + g(r, §) sin a sin 8] sin y. (13.3)

The correlations denoted by f(r, ) and g(r, £) are indicated in Fig. 5.

If now any two points with coordinates (x1, y1, z1) and (3, % 23) and speed
quantities wyua, uyVs, U Ws, Vithy, V102, Vs, Witky, Wb, and Wyws are the compo-
nents of a second rank tensor. Each one may be evaluated by equation (13. 2)
in terms of f(r, t) and g(r, £) with the result in tensor notation

R= M + g(r, DI (13.4)

where r is the vector having components X =x;—x, Y=y,—y, Z=2,—2
. 100
ris | r| and Iis the unit tensor {0 1 0
001
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The velocity fluctuations satisfy the equation of continuity. Hence
ou dy dw
I + = ..|_ . (13.5)
axz ayz 67;2

Multiplying by w#:/#* which is independent of s, ¥, 23 and'introducing the
correlation coefficients Ry,u,, etc. and the components X, ¥, Z of r:

ORu,u, + Ry, +6Ru,w,

= 0. (13.6)
X Yy 0z
From equation (13.4)
Rem=t"txity Run=1"fxyr, Rw=-'"Exz
r? r? r

whence, remembering that X24Y2+22=¢? dr/0X=X/r, Of/dX =(3f/07)
(0r/0X) = (X /r)(9f/dr), etc., equation (13.6) becomes

X[2(f — g) + r(3f/9n)) = 0. (13.7)
The continuity equation must be true for any value of X, Hence '
2f(r, t) — 2g(r, &) = — 13f(r, 1)/ 0r. (13.8)

The correlation tensor can thus be expressed in terms of a single scalar
function, either f(r, £) or g(r, t). The function g(r, t) is the correlation coefhi-
cient previously denoted by R,. The scale L= [oR, dy=[,g dr. The integral
S R.dx=[,f dr is termed the longitudinal scale L, to distinguish it from
the lateral scale L. Obviously from equation (13.8) ’

L—L.=} f r(af/or)dr = } f #(0R./0%)dx. (13.9)
0 0
Since f and g are even functions of r,
f=14firt/2 4. (13.10)
g=14gir?/2+ - . (13.11)

From equation (13 8), 2fs =go, whence for small values of 7,

= [1 + (gh/2)r2] X + [(f§ — g6/2]er
= (1 + f§r)I — (1/2)fErr.

We require later the second derivatives of R at r=0, i.e. X=Y=2=0, as
follows:
62R“1“l _ az‘RVl"x d Rwlw:

- - 13.13)
axe aY? ozt fi (

(13.12)
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Rupy  9Rugu,

and similar terms obtained by cyclic exchange = 2ff (13.14)

ovr ez
62R“|Vl . .
SXoY and similar terms obtained by cyclic exchange = — (1/2)/%. (13.15)

! etc. are zero. (13.16)

All others, e.g.
aXaZ

Von Kirmén points out that the correlation tensor is of the same form
as the stress tensor for a continuous medium when there is spherical sym-
metry. In the analogy f(r) corresponds to the principal radial stress at any
point, g(r) to the principal transverse stress, and the several R's to the stress
components over planes normal to the coordinate axes. The relation between
Jf and g given by the continuity equation corresponds to the condition for
equilibrium of the stresses.

Equation (13.8) has been experimentally checked at the National Physn-
cal Laboratory.%

14. Correlation between derivatives of the velocity fluctuations. In fur-
ther developments it will be necessary to know the mean values of the prod-
ucts of the derivatives of the components of the fluctuations at a given point,
for example (du;/3x1) (8v;/331). These mean values may readily be computed
from the correlation t‘en/sor. Thusr—

a(“lvz) - F a(R\‘l”l) - ;—2- a(R“l”l) (14‘1)
69;1 ax, oxX
Since v; is not a function of x4, this may be written
(041/3%)vs = — WAR,,.,/0X. (14.2)

Differentiating now with respect to y,
B o ET :
(Tl (e
8xy 8y, 9y \dm ] .4 axXovY

Now letting P, and P; coincide,

ou dy _i(asz

axay " \axav

X=Y=0. .
dx 3y ) (14.4)

The limiting value of the second derivative has previously been computed
{equation (13.15)), whence

au dy fo 5
1?2,
ox 6y 2

(14.5)

By similar reasoning it may be shown that
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G- G) -

)

G -G

and

G

dy du Odw 9y

0y 02

The method can be extended to derivatives of higher order.

15. Triple correlations. Von Kér-
mén designates the mean values of
the product of three components
of the velocity fluctuations, two of
which are taken at one arbitrary
point and the third at a second arbi-
trary point, as triple correlations.
They arise when correlation coefhi-
cients are introduced into the equa-
tions of motion. He shows that the
triple correlations are components of
a tensor of third rank designated T
which is a function of X, ¥, Z and the
time. He proves that in isotropic tur-
bulence this tensor can be expressed
in terms of three functions k{r, #),
k(r, ), and ¢(r, ¢) corresponding to
the correlations shown in Fig. 6, and
tions in powers of r begins with the

= — uff (14.6)
-G -G
-(5) =5
i ¥ (14.7)
2 —
= — 2”2}.0
ou dw
—_——= 14.8
o ox 27" (14.8)
Tv} hin,t) Uz
u,‘i K(n,t) sy
L/l q(nt) v,,T
u, > )
¢ n —

F16. 6. The principal triple correlations
in isotropic turbulence.

that the development of these func-
r* term. The equation of continuity

permits the expression of k and ¢ in terms of % by the relations:

k= —2h

g = — h— (r/2)(dh/dr).

(15.1)
(15.2)

Thus the tensor T can be expressed in terms of a single scalar function k(z, £).
16, Propagation of the correlation with time. The fluctuations are assumed
to satisfy the equations of motion, namely,

Auy
at

du,
wn—
axl

oy
v —
ay,

6'“1

6’u;

s

*u,

I

0%y

2
dzy

+ V< ) (16.1)
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and the two equations obtained by cyclic permutation. ‘
Multiplying this equation by #u,, introducing X, ¥, and Z, and taking
mean values:

T 8ur A(bus)  O(wmms)  O{(wmwius)
Uy —— ~— - .

ot X oy EYA
. 9% % n 02
LA 4 y<- il | O ! ”). (16.2)
p 0x axe ay? YA
By an analogous procedure, it may be shown that:
6142 6u§u1 6u2vzu1 auzwgu,
"’y — — - —
Yo ox 1% Y
(16.3)
1 ap <62ulu2 0% 1 n 83u;ua>
= — — gy — .
P dm ax? e 922

Von Kérmén shows that the pressure terms vanish, Adding the two equations
and introducing the correlation coefficients, we find

8 __ R T S
Py (#2Ruuy) — (4?2 % (ufus + uiny) ~ (u’)’“;]; (w1132 + uavauy)

—_ ¢ .
— () iz (rwiny + uswanr) (16 .4)
. Puruy  Ouamy gy ]
= 2m? 4+
[ axz ar? YA

This equation may be expressed in terms of the functionsf, g, &, ¢ and h.
Then by using the relations (15.1) and (15.2) between these functions ob-
tained from the equation of continuity, a partial differential equation between
Sand % is'obtained, namely

a(f“2)+2( z)s/2<6f ﬁ) = 2uu2(82f +_ _/> (16.5)

4 or? r 9

This is the equation for the change of the function f with time, but it can-
not be solved without some knowledge of the function .

17. Self-preserving correlation functions, Let us suppose that the func-
tions f(r, £) and k(r, ¢) preserve the same form as ¢ increases, only the scale
varying. Such functions will be termed “self-preserving.” If L is some measure
of the scale of the correlation curve, f and % will be functions of r/L only,
where I is a function of ¢ The length L may be any measure of the scale such
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as the radius of curvature of the correlation curve at r =0 or any other desig-
nated point, the value of r for a given value of the correlation coefficient, or
the quantity obtained by integration of the correlation coefficient from r=0
to infinity which has previously been termed the scale of the turbulence.
Introducing the new variable Y=r/L and placing (#8)Y?=#' in equation

(16.5), we obtain
JL dwr 1 dL of (32f

_—— 17.1

a¢2+ :p v (17.1)

h
_ - 4
't dt W dtwtl/.*_ <6¢z+ \l/)
where N is the Reynolds Number of the turbulence %’L/v. Since the coeffi-
cient of the third term is a numerical constant, the functions f and % will be

functions of Y and ¢ alone only if the coefficients of the other terms are also
numerical constants. This requires that

L du? a(l/v
L gt (17.2)
w3 dt dt
1 dL
— — =B (17.3)
W di
w'L
— =N, (17.4) .

14

where 4, B, and N, are independent of #’, L, and ¢. It is readily shown that
these relations are consistent only if 4 =B and that the solutions are

1 1 24

w?  ud® N

L' — L= 24Nw (17.6)

(17.5)

where #{ and Lo are the values for =0 and u{ Lo/v = N,.

These equations are in the form of equations (11.8) and (11.9) with 4 =B
and agree well with the formulation of the experimental data represented by
equations (11.10) and (11.11) with 24 Nov/L3=2A4u2/Now =24/u}/Lo=0.04,
correspondmg to t=0 at a distance of 80 wire diameters from the grid. The
constant 4 is equal to 0.2056 when L is defined as f R dy.

For self-preserving turbulence equation (16.5) becomes

—Af—A»’/(af/axl')+2(0h/3'l/+4h/'lf)=(2/No)[(6”f/3'lf’+(4/'l/)(3f/¢_9\l’)]- (17.7)

This equation determines the shape of the correlation curve. Von Kérmén'®
discusses the shape when the function % is neglected. The shape depends on
the Reynolds Number N, of the turbulence. The shape also depends on the
constant 4 but closer examination shows that 4 is always associated with L
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and is dependent on the method of defining L. If ¢ is set equal to r4/L in-
stead of r/L, and the length L/A is used instead of L in the definition of the
Reynolds Number of the turbulence, the 4 disappears from equation (17.7).
Whether the values of L defined by fgdr will yield the same values of 4 for all
shapes of correlation curves described by (17.7) cannot be definitely an-
swered,

Approximate solutions of (17.7) are not easy since it turns out that f
varies with Ny in such a manner that, for small values of ¥ at least, the term
on the right-hand side is of the order of unity.

40
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(&) 20
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F16. 7. Hall’s measurements of turbulence behind screens.

According to this suggested theory, the shape is self-preserving and the
Reynolds Number remains constant during the decay of a given turbulent
field. The scale approaches very large values as the intensity approaches very
small values. The length N (which is discussed in section 18) is proportional
to L. For different values of the Reynolds Number of the turbulence the con-
stant of proportionality varies inversely as the square root of the Reynolds
Number. Likewise the shape of the correlation curve varies with the Reynolds
number of the turbulence.

Equation (17.6) shows the same functional relation between the scale and
the time as given by Prandtl at the Turbulence Symposium as a result.of his
analysis of photographs of the decay of isotropic turbulence.
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Von Kérmén also discusses the case in which the assumption is made
that the self-preserving feature applies only to large values of ¥ and the
Reynolds Number N, is sufficiently large that the right-hand term of (17.7)
can be neglected. In this case (17.2) and (17.3) are obtained without (17.4)
and the solution is. identical with that given by (11.8) and (11.9) of sec-
tion 11, The theoretical equations (17.5) and (17.6) do not involve either U

16
o
L e JUU—
14 ~ "SCREEN No.2
+ SCREEN No.3
2 o SOCREEN No.4
) +
10
Yo e
oY
K
6 o ,'/
4 t/‘}f
3/,/ VON KARMAN
2 - A
J""“(d
0 [ n
2 ©O0 2 4 6 8 10 2 14

Fi1G. 8. Von Kirman's measurements of turbulence behind screens,

or M explicitly, However, for comparison with experimental data, they may
be written as follows:

ud \? 24ud ¢ ud (x — x0)

—) =14 =1424 — —nr 17.8
(u’) Lo + U Lo ( )

L\? 24udt ud (x — )

—}=14 =1424 — — 17.9
(Lo) Ly + U Lo ( )

Both #{ and L, should be known, but unfortunately L, was not measured
in all of the experiments,

Figures 7, 8, and 9 show the results ot Hall, of von Kérmén, and of the
author and his associates (designated NBS) plotted in a manner to facilitate
comparison with equation (17.8).

The reference position xo has been taken as 40 times the mesh length ex-
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cept for von Kérmén's results for which x¢ was taken as 212.5 times the rod
diameter (equivalent to 2o/ M =40 for d/ M =0.188). In the absence of definite
information as to Lo, Lo/ M was assumed equal to 0.29 except for von Karmin’'s
results for which Lo/d was assumed to be 1.54 (equivalent to Ly/ M =0.29 for
d/M =0.188). The value of u{ was determined by interpolation from the ob-
servations of each experimenter near x/M =40, giving the following results.

14
\2 =17 "MESH

o 1/2"MESH
10 + | "MESH /o
8 * e

¢ c
6 - /4
) P
4 /"o/ v
d// N.B.S.

2 /’
0 }/ ‘
-2 0 2 4 6 8 10 2 14 16 18

F1G. 9. NBS measurements of turbulence behind screens.

L 4

Rod

. Mesh X Air Speed
Experimenier Diameter /U
Inches Inches Jt/sec o / Remarks
Halt 1.0 0.188 20 0.0146
.5 .092 20 .0144
0.5 .092 40 .0152
0.5 .092 80 L0174
von Kérméan 0.5 0.105 38 and 54 L0201 Screen 2
0.5 .084 38 and 75 .0201 Screen 3
0.5 .043 38 and 75 .0299 Screen 4
NBS 0.25 0.050 20-70 0.0250 NACA Tech. Rept. 581
0.5 .096 20-70 .0221 NACA Tech. Rept, 581
1.0 .196 20-70 .0224 NACA Tech. Rept, 581
1.0 0.196 30 0.0188 Recent tests
1.0 .196 70 .0173 Recent tests
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The values of #¢ /U range from 0.0144 to 0.0299; presumably the differ-
ences are due mainly to the factors discussed in section 11, although system-
atic errors may be partly responsible.

In each figure, equation (17.8) with constant 4 equal to 0.29 is plotted
as a straight line. Most of the points would be better fitted by a curve of
increasing slope with increasing time. It thus appears that equation (11.9)
with (4 4 B)/A having some value between 1 and 2 fits the experimental data
better than (17.8).

However, the data are not at all consistent. The departures. are largest
for the smaller values of #//U. In Hall's experiments, the results on the
$-inch screen show little systematic departure at 40 and 80 ft/sec, whereas
those on the same screen at 20 ft/sec and on the 1-inch screen begin to rise
above the line at #4¢/Lo=0.5. Von Kirmén's data on screen 2 at 38 ft/sec
lie near the line; those on the same screen at 54 ft/sec and on screens 3 and 4
at 38 and 75 ft/sec begin to rise above the line at ud¢/L¢=4.0. The older
results of the author and his associates, while scattered, agree with the line
within 12 percent to %{ ¢/Lo=18; the more recent results begin to rise above
the line at #d ¢/L¢=0.5 and are in fair agreement with Hall’s data on a 1-inch
screen. Unfortunately, data at large values of £/ M could not be obtained in
the recent experiments.

Thus, even when attention is confined to the behavior of the isotropic-
turbulent field, there remain discrepancies in the experimental data such that
no definite conclusions can be drawn as to the merits of any theory. Further
experiments are required under carefully controlled conditions in an air
stream of low turbulence over a wide range of values of /M and with due
regard to the various systematic errors that may be present. These experi-
ments would be of the greatest value if the scale were also measured.

18. The length A\, Relation between A and L. The general expression for
the mean rate of dissipation in the flow of a viscous fluid is:

W= {2 (au>2+ ) (0v>2+ g (aw )2+ <6v N au>2
-k dx dy 0z dx 9y

(18.1)
n <6w n 6v)“+ (6u+ 6w>’}
dy 0z 0z ox .
where u is the viscosity.
For isotropic turbulence this becomes:

w du\? du\*® oy du

—=6(—)+6(—)+6——- (18.2)

I ox dy dx 0y

which, from the relations given in section 14, reduces to:
W= — 1.54ulg = 7.54(0u/oy)> (18.3)
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But gy is defined by:

1 —
fh=—2 lim( g) (18.4)

-0 r?
and has the dimensions of the reciprocal of the square of a length, Let
gh= —2/\ (18.5)
the factor 2 being introduced to conform to Taylor's definition of A. Then
W = 15unu?/22 (18.6)

The length X may be interpreted in several ways. Equation (18.6) may be
considered a definition, N being regarded roughly as a measure of the diame-
ters of the smallest eddies which are-responsible for the dissipation of energy.
Or, since 1/M=limo (1 —g)/r*=limy~o (1 —R,) Y%, A is a measure of the ra-
dius of curvature of the Ry curve at ¥=0. Or, if a parabola is drawn:tangent
to the R, curve at ¥'=0, this parabola cuts the axis at the point Y=\,

Since W= —(3/2)p(du?/dt), the decay law may be written:

du?/dt = — 10vuZ/z2, (18.7)

This result can also be derived directly from equation (16.5) as shown by
von Kérmén,

By comparing this expression for the decay law with that previously given
(equation 17.2), namely

dut/dt = — Aw'Y/L (18.8)
it is seen that
Aw' /L = 10v/\? (18.9)
or, since u'L/v= N,
N /L? = 10/AN,. (18.10)
Introducing the experimental value of 4,
ML = 6.97/+/N,. (18.11)

A similar relation holds for N/L, where L, is the longitudinal scale. If
the Reynolds Number is formed from L., the numerical constant is approxi-
mately 4.93.

During the decay of self-preserving turbulence Ny is constant and \ is
proportional to L but the constant of proportionality varies inversely as v/Nq
for turbulent fields of different Reynolds Number.

Although it cannot be expected on physical grounds that these relations
hold at very low values of Ny, there is no experimental evidence of any de-
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parture from equations (18.7) and (18.8) for values of N as low as 10. There
seems to be no difficulty in drawing correlation curves for which X is greater
than L, but no such experimental curves have been measured. However, in
an example quoted by Taylor,’® A/L is as great as 0.86.

19. The spectrum of turbulence, relation between spectrum and correla-
tion. The description of turbulence in terms of intensity and scale resembles
the description of the molecular motion of a gas by temperature and mean
free path. A more detailed picture can be obtained by considering the dis-
tribution of energy among eddies of different sizes, or more conveniently the
distribution of energy with frequency. Just as a beam of white light may be
separated into a spectrum by the action of a prism or grating, the electric
current produced by a hot wire anemometer subjected to the speed fluctua-
tions may be analyzed by means of electric filters into a spectrum.

The mean value of # may be regarded as made up of a sum of contribu-
tions #2F(n)dn, where F(n) is the contribution from frequencies between 7
and n+-dn and f: F(n)dn =1, The curve of F(n) plotted against #n is the spec-
trum curve. According to the proof given by Rayleigh and quoted by Taylor?

F(n) = 22" lim (1% 4 19)/T (19.1)

Tr— w0

where T is a long time and

T
I = (l/w)f u cos 2xnt dt
’ (19.2)

7
I, = (1/1r)f u sin 2znt df.
0

When the fluctuations are superposed on a stream of mean velocity U and
are very small in comparison with U, the changes in « at a fixed point may be
regarded as due to the passage of a fixed turbulent pattern over the point,
i.e., it may be assumed that

u = ¢()) = ¢(x/U) (19.3)

where % is measured upstream at time ¢ =0 from the fixed point. The correla-
tion R, between the fluctuations at the times ¢ and {4/ U is defined by

_ 05 70

(19.4)
“2

z

It can be shown?® that

[ o0+ wwyi = 20" [T @1+ 1) cos e/ )in - (19.9)

2 Taylor, G. 1., The spectrum of turbulence, Proc. Roy. Soc. London, Ser. A, 164, 476
(1938).
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or, substituting for I*4-13 its value in terms of F(n),
= fwl"(n) cos 2nnx/U)dn (19.6)
0
and
Fn) = (4/0) j;wR, cos (2mna/U)dx (19.7)

In other words, the correlation coefficient R, and UF(n)/+/87 are Fourier
transforms. If either is measured, the other may be computed. R, is the func-
tion denoted by f in section 13. The length A, which was defined in terms of the
function g or Ry, is related to R, by the equation:

1/A% = 2 lim (1 — R.)/%% (19.8)
z—0

When # and x are small, cos (2mnx/U) in (19.6) may be approximated by

1 — 27’2/ U? Hence

i/ = /vy f "t (). (19.9)

If the turbulence is self-preserving, the shape of the correlation curveisa
function of the Reynolds Number of the turbulence. Hence the spectrum
curve is also a function of the Reynolds Number of the turbulence. Introduc-
ing the longitudinal scale L, (L,=f:R,dx) in equation (19.9),

L. © (nL\? UF(n) [nL\
Le_ 4"2_[ _> d (19..10)
A2 0 U L, v
and in equation (19.7),
UF(n) °° 2znLl,. « x
= 4f R, cos 4 —) (19.11)
Lz 0 U L: Lz

both of which are expressed in terms of the non-dimensional variables
UF(x)/Ls, nL;/U, %/Ls, N/L., and R.. The mean speed U enters only in
fixing the frequency scale.

Typical spectrum curves determined experimentally?'22 are shown in
Fig. 10. Studies of the relation between the spectrum and the correlation
curve have been given by Taylor.2

From equation (19.10) it may be inferred that if the curve of UF(n)/L, vs.

% Simmons, L. F. G., and Salter, C., An experimental delermination of the spectrum of
turbulence, Proc. Roy. Soc. London Ser. A, 165, 73 (1938).

3 Dryden, H. L., Turbulence investigations al the National Bureau of Standards, Proc. Fx[th
Inter. Congr, Appl. Mech., Cambridge, Mass., 1938, p. 362.
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nL,/U is independent of U, L./\ should also be independent of U, which is
contrary to the known dependence of L./A on the Reynolds Number of the
turbulence. Equation (19.9) shows that the value of X is determined largely
by the values of F(n) at large values of #, The NPL measurements in Fig. 10

19 NAS NPL.
: T
N -
g
N A

a = A H —-4

13 1114

L3 [ 1311 A (1111

1IN
I
] 11 1111 T

\\'v ———

R

ERRRR

) 444

0 = AQ
%
] 4

+
a o L] a0t o ] 10

Fi16. 10, Comparison of National Bureau of Standards and National Physical Laboratory
measurenients of the spectrum of turbulence, plotted non-dimensionally,

At left, NBS values 40(-) and 160(+) inches behind 1-inch mesh screen at 40 ft/sec,

At right, NPL values of (F(n) from Table I1 of reference 21, L. from reference 20) 82 inches
behind 3-inch mesh screen at 15(+), 20(X), 25(+), 30(A), and 35((J) ft/sec.

The reference turve in each case is the curve

UF(@#n) 4
L, dnt2 L2
14+ 7

where U is the mean speed, L. is the integral f:R,dx, R, is the correlation between the fluctua-
tions at two points separated by the distance « in the direction of flow, # is the frequency, and
F(n) is the fraction of the total energy of the turbulence arising from frequencies between n and

n+dn.

show clearly this dependence of the spectrum curve on U at high frequencies.
When the Reynolds Number of the turbulence is large, N/L. becomes
small., Experimental measurements show that both R, and R, curves ap-
proach exponential curves. From integration of equation (13.9) it follows that
2L =L and equation (19.11) for the corresponding spectrum curve becomes:
UF(n) 4

L. L+ 4l /U

(19.12)
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This is the reference curve drawn in Fig. 10. As U decreases, A increases, and
the departures at large values of #L./ U becomes greater. The changes in the
total energy of the fluctuations associated with these changes in the spectrum
at high frequencies are extremely small,

Adopting this expression for the spectrum curve, it is possible to compute
the effect of varying the cut-off frequency of the measuring equipment on the
measured value of the energy of the fluctuations. If the equipment passes
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Fic. 11. Effect of cut-off frequencies of apparatus on observed energy of turbulence for
spectrum given by reference curve of Fig, 9.

no is the lower cut-off frequency, #a the upper cut-off frequency, L. the longitudinal scale,
U the mean speed.

high frequencies but cuts off sharply at a lower frequency n,, the measured
total energy is

—* 4(L./U)dn 4 2wnol\ |
o L PR T2 S
nolov 1 + 4x*n2/U? 27 U

The ratio of the observed to the actual total energy is shown in Fig. 11 for
various values of n,L./U.

Similarly, if the equipment passes low frequencies but cuts off sharply at a
higher frequency 7, the measured total energy is (4/2r) tan= 2rn\ L./ U(ipud).
The ratio of the observed to the actual total energy for high frequency cut-
off is also shown in Fig. 10. .

The fact that the correlation and spectrum curves are of the exponential
type has been interpreted? as meaning that turbulence is a generalized chance
phenomenon, as nearly chance as a continuous curve can be and retain its
continuity,
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20. Fluctuating pressure gradients. In theories of the effect of turbulence
on transition in boundary layers, it is desired to know the value of the root-
mean-square pressure gradients, i.e., (3p/dx)% (3p/3y)% and (3p/ds)%. Taylor
has shown?® that

V(3p/0%)% = 20/2 ptE/\. (20.1)
Combining this with the relation (18.11), i.e., N\/L=6.97//(32)12L/y

V 3P\t _ 2V 2e0® 1/(FML 20.2)
(5;) 6.97L v ‘

The quantities /% and L occur in this expression in the combination
[(v/u3)/L¥8]52, The ratio (v/%/U)(D/L)V5, where U is the mean speed and
D the reference dimension of a body under study is known as the Taylor
turbulence parameter,

21. The diffusive character of turbulence. An early experimental distinc-
tion between turbulent and non-turbulent flow was based on the observation
that a filament of dye introduced into a turbulent fluid stream is rapidly
diffused over the entire cross section of the stream whereas in a non-turbulent
flow the filament retains its identity although it may show some waviness.
It has been pointed out in section 7 that the effect of the turbulent fluctua-
tions on the mean motion is the introduction of eddy stresses associated with
the transfer of momentum by the diffusion of fluid particles. Von Karmén®
has given a useful account of the mechanism of the diffusion of discrete par-
ticles and its effect in producing a shearing stress. A theory of diffusion by
continuous movements has been developed by Taylor.' The process of diffu-
sion has been found helpful in the experimental study of the statistical prop-
erties of turbulence.

22. Diffusion by continuous movements. Consider in a uniform isotropic
turbulent field the displacement X and velocity % parallel to the arbitrarily
selected x axis. The intensity /72 is constant, the field being assumed
uniform. Let #; and #,. be the values of # at times ¢ and ¢’ respectively.
Consider the definite integral [iuu,dt’. Introducing the correlation coeffi-
cient Ry, between %, and u,, remembering that %2 is constant,

[ t
f u,updl’ = }Tzf R;,ud". (22 . 1)
0 0

Let ¢/ —¢=T and place R,,;s=Rz. Since Ry is an even function of T, (22.1)
may be written: .

t ¢
f v pdt = 162 f RpdT. (22.2)
0 0

23 K4rmén,; Th, von, Turbulence, Jour. Roy. Aeron. Soc. 41, 1109 (1937).
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But

¢ ¢t o o
f wpdt = mf wedt! = w, X = uX. (22.3)
0 0
Hence
‘ —
Ut f RpdT = uX = (1/2)dX?/dt. (22.4)
0

When the time ¢ is so small that Ry approximates unity, equation (22.4)
becomes:

(1/2)dX%/dt = u%

or
VX = k. (22.5)
If Ry is equal to zero for all times greater than some time T’
uX = ?fToRTdT = constant. (22.6)
: 0
Define a length /; by the relation:
— [T
L= RpdT (22.7)
whence ’
IVut = uX = (1/2)dX%/dt (22.8)
and
XE = 2\ ult. (22.9)

If Rp=e-TITo, y =+/%T, and the solution of (22.4) yields:
X2 = 20Tyt — To(1 — ¢ 7IT)]. (22.10)

Equation (22.10) reduces to (22.5) when ¢ is small compared to T, and to
(22.9) when ¢ is large compared to T,

The diffusion in a uniform field is accordingly completely determined by
the correlation function Ry.

23. Diffusion in isotropic turbulence. The foregoing theory is directly ap-
plicable to diffusion in a uniform isotropic field. However no general state-
ment can-be made as to the relation between the length /, and the scale L
defined in terms of the correlation coefficient R, in section 9. For the turbu-
lence behind a grid or honeycomb, Taylor found from an analysis of the avail-
able experimental results that L was approximately twice /,.
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The essential features of diffusion in isotropic turbulence expressed in
equations (22.5) and (22.9) may be summarized as follows:

1. For time intervals which are small in comparison with the ratio of /4
to v/42, the diffusing quantity spreads at a uniform rate proportional to the
intensity v/22, and the rate is not dependent on the length /.

2. For time intervals which are large in comparison with the ratio of
to /2, the diffusing quantity N spreads in accordance with the usual diffu-
sion equation

oN aN oN aN d aN i} oN J aN
—+U—.+Va—+w~=~<1)~>+ (D_>+?(D_>
y S

ot ox 0z dx ax a—y dy 9z
with a coefficient of diffusion D equal to LA/, where I is a length defined
by fo RTdT.

3. For intermediate time intervals, the diffusion is dependent on the func-
tion Ry which represents the correlation between the speed of a particle at
any instant and the speed of the same particle after a time interval T

Consider the diffusion of heat from a hot wire placed in a uniform field of
isotropic turbulence in a fluid stream of mean speed U. Observations of the
lateral spread of the thermal wake at a distant x downstream may be used to
compute the root-mean-square lateral displacement /7% of the heated par-
ticles during a time interval t=x/U.

It is convenient to characterize the spread by the angle subtended at the
source by the two positions where the temperature rise is half that at the
center of the wake. There is a lateral spread of heat produced by the ordinary
molecular conduction corresponding to an angle o in degrees of 190.8v/%/pcUx
where £, p, and ¢ are thermal conductivity, density, and specific heat (at con-
stant pressure) of the fluid. It may be shown that the total subtended angle a
is related to the angle o, produced by turbulent diffusion and oo, as follows:
a2 = af + a:. (23.1)

The temperature distribution in the wake follows an “error” curve as does
the amplitude of the turbulent velocity fluctuations, so that the lateral dis-
placement ¥ also has the same Gaussian frequency distribution. The value
of the lateral spread at which the ordinate is half the maximum is 2,354/ 7%
for this distribution, Hence, expressing «, in degrees,

a, = 134.7vV 7%/« (23.2)
whence from (22.5) for small values of x,
oy = 134. 73U ~(23.3)

where v is written in place of » in (22.5) since the diffusion in the v direction
is being studied.
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Thus an experiment on thermal diffusion provides a method of measur-
ing v/¥%. The method was used by Schubauer® who showed that a, was inde-
pendent of speed over the range 10 to 50 ft/sec and also independent of x
over the range 1/2 to 6 inches.

From measurements at large values of x, it is theoretically possible to
compute the correlation curve, Ry, vs. T. In any actual experiment, how-
ever, the intensity of the turbulence will decrease with x to an extent that
must be considered. As discussed by Taylor,® Rr may then be considered a
function of 7= [,/3dT = [:(/1*/ U)dx. The equation analogous to (22.4) for
v and Y becomes:

Nz
(/NPT = [ R (23.4)
0
The correlation is given by the expression
d( U dv?
Ry=— —x— 23.5
! dq(Z\/v’ dx) (2.5

and thus involves a double differentiation of experimental curves, a process
which is usually not very accurate,

24, Statistical theory of non-isotropic turbulence. In non- lSOtrOplC turbu-
lence the description of the state of the turbulence becomes much more com-
plex. The eddy shearing stresses do not vanish and the eddy normal stresses
are not necessarily equal. Six quantities instead of one are required to specify
the intensity. Similarly the correlation tensor cannot be expressed in terms
of a single scalar function. In general six scalar functions are required. No
theoretical investigation using these twelve functions has yet been carried out.

The exploration of this field is still in its earliest stages. Von K4rman®¢
has given some discussion of energy transport and dissipation and vorticity
transport, neglecting the triple correlations, and he has also presented a more
detailed discussion of two-dimensional flow with constant shearing stress
(Couette’s problem). The advance of the theory is definitely handicapped by
the absence of reliable experimental data on the twelve functions required to
describe the state of turbulence.

25. Diffusion in non-isotropic turbulence, The only theoretical approach
at present available for estimating the diffusion in non-isotropic turbulence
is to consider the process as approximately equivalent to diffusion in isotropic
turbulence of intensity equal to v/#¥ and scale I/, where v is the component
in the direction in which the diffusion is studied and ' is the length deﬁned
by an equation analogous to (22.7), namely,

% Schubauer, G. B., 4 turbulence indicalor wlilizing the diffusion of heat, Tech, Répt.
Nat. Adv. Comm. Aeron,, No. 524 (1935).
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I = \/ﬁf Rrdt. (25.1)
o .

In most experiments the length !’ is not measured. Prandtl defined a mix-
ing length ! in terms of the shearing stress 7 by the relation:

av|dU

dy | dy

T = pl?

: (25.2)

This relation may be interpreted as an equation governing the diffusion of
momentum with a coefficient of diffusion equal to l2| dU/dy| . Prandtl in fact
assumed /72 proportional to lIdU/dyl and incorporated the factors of pro-
portionality in the length /. It is obvious that

2| aU/dy| = I\ (25.3)

The length / can be obtained experimentally if the distributions of velocity
and shearing stress are known, and, if /2% is also measured, ’ may be com-
puted. Sherwood and Woertz*® have made an experimental study of these
relationships.

Taylor?® pointed out that fluctuating pressure gradients influence the
transfer of momentum and suggested that the vorticity be taken as the prop-
erty undergoing diffusion. The result was the well known vortex transport
theory.

Both theories imply diffusion for a time interval long compared to I’A/%%
When diffusion is studied near the source, experiment shows? a behaviour like -
that discussed in section 23. The spread is nearly linear with #, although un-
symmetical in this case, It is probable that the unsymmetrical character can-
not be explained on the basis of a single scalar diffusion coefficient.

26, Correlation in turbulent flow through a pipe, Taylor?® has shown that
the correlation between the component of velocity at a fixed point and that
at a variable point in the same cross section must be negative for some posi-
tions of the variable point, if the applied pressure difference between the ends
of the pipe is constant and the fluid may be considered incompressible. Sup-
pose the mean velocity is U and the correlation R has been measured between

16 Sherwood, T. K., and Woertz, B. B., Mass transfer between phases, role of eddy diffusion,
Ind. Eng. Chem, 31, 1034 (1939).

2 Taylor, G. 1., Transport of vorticity and heat through fluids in turbulent motion, Proc. Roy.
Soc. London Ser. A, 135, 685 (1932).

17 Skramstad, H. K., and Schubauer, G. B., The application of thermal diffusion to the
study of turbulent air flow, Phys, Rev., 53, 927 (1938). Abstract only. Full paper not published.
A few additional details are given in Dryden, Hugh L., Turbulence and diffusion, Ind. Eng.
Chem. 31, 416 (1939).

*¢ Taylor, G. L., Correlation measurements in o turbulent flow through a pipe, Proc. Roy.
Soc. London Ser, A, 157, 537 (1936).
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the component #; of the fluctuations at a fixed point P and w, at a variable
point Q in the same cross section. Since the mean flow is constant,

f(U + ug)dydz = f Udydz = constant (26.1)
where the integration is taken over the cross section. At any instant,
fuzdydz = (. (26.2)

Multiplying by u, which is constant for this integration and may be
placed under the integral sign,

fumgdydz = 0. (26.3)

Since (26.3) is true for any instant, it is true for the integral over a time

interval T, Hence
T
(I/T)f l:fumgdydz] dt = 0. (26 .4)
0

glanging the order ot the integration and remembering that (1/T)f07'u1ugdt
=t '

f ugdydz = 0. (26.5)
Introducing the correlation R,

f Ryl uddydz = 0. (26.6)
But %{ is constant with respect to the integration and accordingly

fRug’dydz = 0. | (26.7)

Since %7 is positive, R must be negative for some positions'of Q.
For a circular pipe (26.7) becomes:

f ! Rrdr = 0 (26.8)
0
where #/ is the value of v/«? at radius 7 and ¢ is the radius of the pipe.

This relation was experimentally verified in experiments ‘made by Sim-
mons with the fixed point at the center of the pipe.



MECHANICS

THE LOCAL STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE
VISCOUS FLUID FOR VERY LARGE REYNOLDS' NUMBERS

By A. KOLMOGOROFF. Member of the Academy

§ 4. We shall denote by
Ue (P) = uq (2, ,, 3y, 1), e=1,2,3,

the components of velocity at the moment ¢ at the poinl with rect-
angular cartesian co-ordinates z,, x,, x,. In considering the turbulence
it is natural to assume the components of the velocity u.(P) at every
point P=(z,,%,,%,,t) of the considered domain G of the four-dimen-
sional space (z,,%,,%,¢) random variables in the sense of the
theory of probabilities (cf. for this approach to the problem Million-
shichikov (1)).

Denoting by 4 the mathemalical expeclation of the random variable A4
we suppose thal

_, du \*

ui and | >

dxﬂ
are finite and bounded in every bounded subdomain of the domain G.
Introduce in the four-dimensional space (z,, #,, %,, ¢) new co-ordinates
= = (P =) ) n

s=1t—t®
where
P G O

is a cerfain fixed point fromn Lhe domain &. Observe that the co-ordi-
nates y, of any point P depend on the random variables u, (P®) and

hence are themselves random variables. The velocily components in new
co-ordinates are

Wo {P) = 1,y (P) — uqa (PO). (2)
Suppose thal for some fixed values of u.(£®) the points P,
k=1,2,..., n, having in the co-ordinate system (1} the co-ordinates y("

and (M, are situated in the domain &. Then we may define a 3n-di-
mensional distribution law of probabilities F, for the quantities

W =w, (PP,  «=1,2,3; k=1,2,...,n,

2 G, R. (Doklady) de "Acad. des Sci. de PURSS, 1841, v XXX, M«
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where -
uio) =u, (P('J))
are- given,

Generally speaking, Lhe distribution law F, depends on the para-
meters {0, £, ul®, ylh), sk,

Definition 4. The turbulence 1s called locally homogeneous in the
domain G, if for every fized n, y{v and st the distribution law F iy
independent from z®, t© and u(® as long as all points P®) are situa-
ted in G.

Definition 2. The turbulence is called locally isotropic in the
domain G, if it is homogeneous and if, besides, the distribution laws men-
toned in definition 1 are invariant with respect to rotations and reflect-
ions of the original system of co-ordinate axes (x,,T,,T,).

In comparison with the notion of Isetropic turbulence introduced by
Taylor (*) our definition of locally isotropic turbulence is narrower in
the sense that in our definition we demand the independence of the
distribution law F, from ¢, i. e. steadiness in time, and is wider in
the sense that restrictions are impesed only on the distribution laws
of differences of velocities and not of the velocities themselves.

§ 2. The hypothesis of isotropy in the sense of Taylor is experimen-
tally” quite well confirmed in the case of turbulence caused by passing
of a flow through a grid(cf. (3)). In the majority of other cases interes-
ting from the. practical point of view it may by considered only as a
rather far approximation of reality even for small domains G and very
large Reynolds’ numbers.

On the other hand we Lhink it rather likely that in an arbitrary
turbulent flow with a sufficiently large Reynolds’ number *

_ LU

N
the hypothesis of local isotropy is realized wilh good approximation
in sufficiently small domains G of the four-dimensional space (z,, z,, ,, ¢)
not lying near the boundary of the flow or its other singularities. By
a «small domain» we mean here a domain, whose linear dimensions are
small in comparison with L and time dimensions—in comparisou with

U
T=4.

It is natural that in so general and somewhal indefinile a formula-
tion the just advanced proposition cannot be rigorously proved **. In

. 1* Here L and U denote the typical length and velocily for the flow in the
whole.

** We may indicale here only certain general considerations speaking for the
advanced hypothesis. For very large R the turbulent flow may be thought of ‘in the
following way: on the averaged flow (characterized by the mathematical expecta-
lions u,) are superposed the «pulsations of the first order» consisting in disorderly
displacements of separate fluid volumes, one with respect 1o another, of diameters
of the order of magnitude I =1 (where ! is the Prandtl’s mixing path); the order
qf magnitude of velocities of these relative velocities we denote by oV, The pulsa-
tions of the first order are for very large R in their turn unsteady, and on them are
superposed the pulsations of the second order with mixing path 12 < [ and rela-
tive velocities »® < p; such a process of successive refinement of turbulent pulsu-
tions may be carried until for the pulsations of some sufficiently large order n the
Reynolds’ number :

Jahptmy

v

RO =
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order to make ils experimenlal verification possible in particular cases
we indicate here a number of consequences of the hypothesis of local
isotropy.

§ 3. Denoting by y the vector with components y,,y,, 15, we consider
the random variables '

Wa (y) = Wa (Y/n y2> ya) = Uq (%‘H/u ‘Tz +.I/~.n xa+ys’ l)_ua (:)31’ ‘1‘2’ a"m t)‘ (3)

In virtue of the assumed local isolropy Lheir distribution laws are inde-
pendent from z,,z,,z, and ¢. For the first moments of the guanti-
ties w,(y) from the local isotropy follows that

we (y) =0. (4)
We proceed therefore to the consideration of the second moments *
Bug (y, y®) = wa (y®) wg (y®). (5

From the local isotropy follows Lhat
Bua(y®, y®) = %[ Baa (3, y) + Bag (¥, y2) —
— Bag (y® — y, g — ) ] . (6)

In virtue of this formula we may confine ourselves Lo the second mo-
ments of the form B (y,y). For them

Bap (¥ y) = B (r) cos ), c0s 63 + 8,5 By (), (7)
where
r=yityitys, da=rcosls, S3=0 for a %=, =1 for a=p
B (r)=Bu (1)~ Bun (1), (8)

de (r):[w,(r,0,0)]z, } (9)

By (r) = [w,(r,0,0)]".

becomes 50 small that the effect of viscosity on the pulsations of the order n finally
prevents the formation of pulsations of the order n + 1.

From theenergetical point of view it is natural to imagine the process of tur-
bulent mixing in the following way: the pulsations of the first order absorb the
energy of the motion and pass if over successively to pulsalions of higher orders.
'The energy. of the finest pulsations is dispersed in the energy of heat due to vis-
cosity.

In virtue of ihe chaotical mechanism of the translation of motion from the pul-
sations of lower orders to the pulsations of higher orders, it is natural to assume
that in domains of the space, whose dimensions are small in comparison with IV,
Lhe fine pulsations of the higher orders are subjected to approximately space-iso-
tropic statistical regime. Within small time-intervals it is natural to consider this
regime approximately steady even in the case, when the flow in the whole is
not steady.

Since for very large R the differences

o (P) = uy (P) — u, (P)

of the velocity components in neighbouring points P and P of the four-uimensional
space (&p T, 3, t) are determined nearly exclusively by pulsations of higher orders,
ihe scheme just exposed lends us to the hypothesis of local isotropy in small domains G
in the sense of definitions 1 and 2.

* All results of § 3 are ¢uite similar to that obtained in (1), (2) and (4) for
the case of isotropic lurbulence in the sense of Taylor.
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For r=0 we have
a aJ
de (0) :Bnn (O):d_r de (O)Za—r Bnn (O) =0, (10)
al a 2 A
o Ba =2 (531) =24, |
* J LI
(Tr,B,m(O)=2<a—’;:> —2a. |

The formulae (6) —(11) were obtained without use of the assumption
of incompressibility of the fluid. From this assumption follows the
equation

(11

ade'_ o «
r—t=—2B, (12)

enabling us to express B,, through By. From (12) and (11) follows thal
a} =20, (13)

1t is, further, easy Lo calculate that (assuming the incompressibility)
the average dispersion of energy in unit of time per unit of mass is equal to

G G G G+

AT N 2 Y-y 3 :
F G o)+ G i)} =tow (14
§ 4. Consider the transformation of co-ordinates
rYa , S
Ya="y sh= (15)

The velocities, the kinematical viscosity and the average dispersion of
energy are expressed in the new system of co-ordinates by the following
formulae:
. q , c -y -d
Wa=Wa—, v=v_r7‘, s =e;';. (16)

We introduce now the following hypothesis:

The first hypothesis of similarity. For the locally isotropic
ttu('zbu_lence the distributions F, are uniquely determined by the guantities v
and .

The transformation of co-prdinates (15) leads for

S, 3
3 Va

'q::).:l/ E:r?_’/_‘ (17)

and

v

1
to the quantitiles v/ =1, &' =1,

(3

In virtue of the accepled hypothesis of similarily the corresponding
funclion

Baa (r') =Baq (1) (19)

must be the same for all cases of locally isolropic turbulence. The
formula

B (") =Y/ Buu () (20
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shows in combination with (he already ddeduced thal in the case of
focally isotropic turbulence the second moments B, (¥, y™) are uni-
quely expressed through v,z and the universal funetion 8.

§ O. In order to determine the hehaviour of the function 3, (r") for
large r* we introduce another hypothesis:

The second hypotlthesisof similarily* [If the moduli of
the vectors y® and of their differenc:s yt — y (where k 5= k') are large
in comparison with ), then the distribution laws F, are uniquely deter-
mined by the quantity = and do not depend on .

Put

n

P

" Y
Yr=73r § Tz

(21)

>~ %
i)

where y. and s’ are determined in accordance wilh Lhe formulae (15),
(17) and (18). Since for every %k &' =3"=1, for r’ large in comparison
with 3“=1 we have in virtue of the accepted hypothesis

Bia (")~ Bia (") =fua (55 ) -
On the other hand, from the formula (20) follows that
” " 1 4 ’ 1 ’
Baa (r") = iz Baa (r') = 13 Baa (')
Thus for large r’
’ l . ,
Baa (;*_s}“ i Baa (),
whence
Baa (r') o C ('), (22)
where C is an absolute constant. In virtue of (17), (20) and (22) we
have for r large in comparison with A
By (r) oo C&*lar®ls, (23)

From (23) and (12) it is easy to deduce that for r large in comparison
with A

4

By, (")NgBaa (r). (24)

As regards the last formula, observe that for r small in comparison
with X in virtue of (13) holds the relation

Bnn (I‘) oo 2de (r) : (25)

Received
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ON DEGENERATION OF ISOTROPIC TURBULENCE IN AN
INCOMPRESSIBLE VISCOUS LIQUID
By A. N. KOLMOGOROFF, Member of tue Academy
Similarly as in(*) and(*) we shall consider the components
o (P, t)y=uq(z,, %3 Z,, 1) ‘
of the velocity at the moment ¢ at the point P=(z,, z,, ;) 48 random

variables, and denote by A the mathematical expectation of the random
variable 4.
In the case of isotropic turbulence in the sense of Taylor (%)

Ua=0 (1)
and the second moments
bog=ua(zM, 2, 2, t)ug (2, 2P, 2, t) 2)
are expressed by formulae (*,%)
bog = b (r,t) c08 0, c08 B 4-3.p b .y, (7 2) (3)
where

P = (@ —20) 4 (22 — ) + (o —
z? —z M =rcosl,, 8§ =O0fora+p, 8 =1fora=p

E(r’ t)=byq(r,t)—by,(r, 1) (4
bdd(r’t)_——ul(xnxvxut)ul(x1+r’ Tyy Ty t) (5)
b () 1) = Uy (2,5 Zyy Ty 8) Uy (2, T, 3, 24, 1) (6)
' ab 2T
a—:“—_: ——’_—b . (7)
The formula (7) together with
bag (0, t)="bun (0, t) = [ua(z,, %, Ty, t—)]g =b(t) (8)

enables us to determine the b,, through b,,. Thus, all second moments
are determined by one function only, namely b, (r,?).
For b4, (r,t) Karman and Howarth( ) obtained the equation

it 3% 4 9b
EPHNE S SR 5 S
where
D ina (T3 8) == Uy (Zys Tyy Ty DUy (B, T3 Ty By, 8) - (10)
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Loitsiansky(®) deduced from the equation (9) that

©

A= S by (7 £) rdt (11)
0
does not depend on lime. Take for the «scale of turbulencey the length
1
AN T
L=(3)". (12)
By L and the mean value of the velocity components
u=)"% (13)
we determine the Reynolds number
Lu A _%s

Since u—0 for ¢t—>- co, from (14) follows that for large ¢ the Rey-
nolds number R is small. At this final stage of degeneration of isotro-
pic turbulence it is legal to apply the theory, neglecting the third mo-
ments. As has been shown in(*), in this case

k rd
byq (ry t)=(—[‘m exp (—év—‘> (15)
k rs s
banlrs 1) = o5 (t—g) e (=5) (16)
and, consequently, .
u=At"" (17)
L=By . (18)

It is easy to see, how k, A and B are expressed through v and A.
For large R Kérman(*) has found, assuming by, (r,?) to have the

form
byq (r, t)=b¢ (’I’i)’ (19)

that u=u,(¢t—1¢,)"", L=LJt—t)"?, (20)
but did not, however, determine p*.
Below we give a new proof of the formulae (20), from which follows
that
p=2. (21)
In the first place we establish that for sufficiently large R from the
assumplion (19) follows

d_” — _ Kbt (22)
4

where K is an absolute constant. The formula (22) may be established
in different ways. If we take the assumptions of my note(*), we may
argue as follows. For isotropic turbulence the mean energy per unit of

* The Aequation (77) in (%) is wrongly integrated. In fact, the exponent in the formulsa

—5
{78) should be equal to Bf AB" and in the formula (81)—to Ty AB" The valuep = 3
corresponds to AB = 2.
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mass is equal to 3b. Therefore the dispersion of energy in the unit of
time per unit of mass is in the mean equal to

- db N
&= —":" a—; . (20)

Since, using the notation By {r) from(*), we have
bya (r)=b—3 By, (r), (24)

in virtue of the formula (23) from(®) we have for r, small in compa-
rison to L, but large in comparison to A,

bag (F)~ b (1 — %E"‘r”') . (25)
For the function ¢ (p) we obtain from (25) for small p*
. o) ~1—g™ (26)
where
g=Ce"*L"p"
2
Consequently
- 2gb\Va  _
- =)L (27)
Putting '
27 s
k=3 (%) .. (28)

we obtain from (23) and (27) the formula (22). The formula (28) shows
that the coefficient K is expressed through the absolute constant C,
introduced in(*), and the quantity g, which is to be determined from (26)
by the form of the function ¢ (p). From (12) and (10) we obtain

db -5, 1
A 510
Zi=—KA b7 , (29)
The integration of the equation (29) leads to the result
10 2 10
10 \7 7 T
b=<r—‘—r)’ AT(t—t) 7. (30)
From (30), (13) and (12) follows
5 5
10 \7 -7
u=(ﬁ TA(t—1t) ° (31)
IR 4 2
L= (Wy AT (t—1)" . (32)
Comparing (31) and (32) with (20), we find that p=-2- indeed.
Institute of Mathematics. Received
Academy of Sciences of the USSR. 46, 111, 1941,

Moscow.
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* We assume Lhat tke relation (26) remains valid for arbitrarily small g, but a real
A
sense it has only for » large compared to—E. since the assumption (19) itself is natural

only for r large in comparison to Ji.



MECHANICS
DISSIPATION OF ENERGY IN THE LOCALLY ISOTROPIC
TURBULENCE
By A. N, KOLMOGOROFF, Member of the Academy
In my note (*) I defined the notion of local isotropy and inlroduced the

quantities
By (r) = [ua (M') —uy (M) } (1)
By, (r):[un<M,)'—un(M)]2
where r denotes the distance belween the points M and M’, u,(M) and
uy(M’) are the velocity components in the direction M M’ at the points
M and M', and u, (M) and u,(M')—the velocity componenis at the
points M and M’ in some direction, perpeadicular to MM'.
In the sequel we shall need the t.hird moments

Byga (r)=lug (M')—uy (M)]. (2)
For the locally isotropic turbulence in incompressible fluid we have the
equation
dB, d*B 4 dB
4E+< 04— ded> =6y ( d,’id +" '—ﬂ> 3)

similar to the known equatlon of Karman for the isolropic turbulence

in the sense of Taylor. Herein E denotes the mean dissipation of energy
in the unit of time per unit of mass. The equation (3) may be rewritten
in the form

d p—
(4+3) (08— pu) a2, g
and, in virtue of the condition - de (0) = Byyq (0) =0, yields
6v dBd “ded—_-—E" (5)
For small r we have, as is known, :
Baa’” E": (6)
i. e. 6v é%w%ﬁr.

Thus, the second term on the left-hand side of (5) is for small r infi-
nitesimal in comparison with the first. For large r, on the contrary,
the first term may be neglected in comparison with the second, i. e.
we may assume thal

[l —
Byga~—z Er. (7
It is natural to assume that for large r the ratio
8= By By (8)
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i. e, the skewness of the distribution of probabilities for the difference
Aug=u, (M')—u, (M), remains constant. Under this assumption we have
for large r

9)

c»]n:
w[w

By ~CE
2
)

4
where C= < —%5) - (10)

In (*) the relation (9) was deduced from somewhat different conside-
rations *,
In () we introduced the local scale of turbulence

= ()" ws

and established the assumption that

By (r VVE Baa ( )

12
Bun )=V BB () a2
where 8, and B,, are universal functions, for which for small p
1 2
Baa (P)~ 350" Ban(p)~ gz ¢’ (13)
and for large p
2 2
—_— [‘ -—
Bac () ~ C¢% Bun (6~ = Cp3. (14)

In the case of isotropic turbulence in the sense of Taylor the laws
of locally isolropic turbulence must hold for distances, considerably less
than the integral scale L of turbulence [as regards its rational definition
cf. my note (*)]. The correlation coefficients

Ry (r) = (2 (M) 2y (M) : b } (15)
Rnn(r)z(l‘n(M’)un(M)) b

where b is the mean value of the square of the velocity components,

are here connecled with By (r) and B,,(r) by the relations

Bua=2b(1—Ry) }
B,.=2b(1—R,,)
In virtue of (16) and (12) we shall have for r, small in comparison

with L, .
1— Hud"-‘l‘/“;gpad <L>

1—Rnn'\" 2b ﬁnn( >

1f » is small in comparison with L, but large in comparison with )\, we
have in_virtue of (14) and (11)
2

1'—Rdd’\/“—‘CE 8

(16)

(17)

2
3

(187)
__2 2
1_Rnn,\,_CEsb—1 8 (18”)
* A Obukhoff has found the relation (9) mdependently by computmg the balance
of the energy distribution of pulsations over the spectrum [ci.” (¥)].

a .
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The formulae (18) enable us to determine the constant C from the
experimental data. The most accurate measurements of the correlation
coefficients. R,, and R,, were carried out by Dryden, Schubauer, Mock
and Scramstad in their paper (‘). Rewriting (18”) in the form

. 2
3

3
1—R,, ~2C (kr)®, k=E: (3b)2, (19)
I caleulated from the empirical formula (17) of the paper (‘) (putting

3 a)

in the denotations of (*) b=VZzT’, E = U dx“2> the values of the

coefficient k, corresponding to the turbulence at the distance of 400
from the grid with the width of mesh M equal to 17, 3'/," and 5"

M in inches . . . . 1 3Y, 5
kinem™ ., ., .. 0.197 0.065 0.042

With these values for % the graphs in Fig. 5 of (!), taking into
account the wire-length correction, show for values of r, not too large
in comparison with L, a good agreement with formula (19) for

3

The local scale A is, in the circumstances of experiments described in (%),
so small that deviations from the relations (18) cannot be observed for

small r*. .
The curves in Fig, 28 of (®) cannot be directly used for the deter-

mination of C, since the wire-length correction 1is nol introduced into
them, They confirm, however, for r, small in comparison with L, the
relation

(1—Rp):(1—Ry) =+ (21)

following from (18), with a salisfactory accuracy.

If we take into account the wire-length correction for the ratio (21),
in (‘) is obtained the value 1.28 [cf. (*), p. 29], which is also suffici-
ently close to the theoretical value 4/3, if we consider the limited

accuracy of the experiment.
Received
30.1V.1941,
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* In connexion with this we may remark that the attempt of application to the obser-
vations of (4) of the theory of isotropic turbulence, neglecting the third moments, under-
taken by Millionshtchikov in (®), must be considered as based on a misunderstanding.
It is easily verified that under the circumstances of observations in (%), in the equations
connecting the second moments with the third ones [e. g. in equation (3)] the ferms with
the second moments are considerably smaller, than the terms with the third moments.

In Fig. 3 of (%) the comparison of the theoretical curve for R,, (obtained under neg-
lection of the third moments) with the experimental data of (%) is carried out in the right
way, since: 1) the used data refer to a definite spectral component of the pulsations, and
not to the total pulsations, and 2) the experimental data do not correspond to the condi-
tion 8 vt=7.56, by which the theorelical curve is determined. In his later papers
Millionshtchikov himself gave, by means of rather fine considerations, using the third
and foutx;th moments, an estimation of the error resulting from the neglection of the third
moments,



PROGRESS IN THE STATISTICAL THEORY
OF TURBULENCE!

By

THEODORE VON KARMAN

California Institute of Technology
Pasadena, California

The fundamental notion of statistical mean values in fluid mechanics
was first introduced by Reynolds (1894). In his description of the
turbulent motion he started from the molecular disorder. By con-
sidering the mean value and correlations in the molecular motion, as
it was shown before, one obtains the equation of Stokes-Navier
(1845, 1822). The solutions of these equations were designated by
Reynolds as “mean motion.” The second step in Reynolds’ develop-
ment is the consideration of the turbulent fluctuation, He assumes,
for instance, that the apparently parallel flow in a cylindrical tube
consists of a fluctuating motion characterized by the fact that the
motion, at every instant, satisfies the Stokes-Navier equation. The
parallel motion obtained by the formation of average values is called
the “mean mean motion.”

Reynolds’ most important contributions were the definition of the
mean values for the so-called Reynolds stresses and the recognition
of the analogy between momentum transfer, transfer of heat and
matter in the turbulent motion.

In the decades following Reynolds’ discoveries, turbulence theory
was directed to find semiempirical laws for the mean mean motion by
methods borrowed from the kinetic theory of gases, 7. e., from the
theory of the mean motion,

Prandtl’s (1925, 1927) ideas on momentum transfer and Taylor’s
(1915, 1932) suggestions concerning vorticity transfer belong to the
most important contributions of this period. But I believe that my
formulation of the problem (1930) by the application of the similarity
principle has the merit of being more general and independent of the
methods of the kinetic theory of gases. This theory of mine led to the
discovery of the logarithmic law of velocity distribution for the case of
homologous turbulence. I call the turbulence homologous if the

1 Presented at the Heat Transfer and Fluid Mechanics Institute, Los Angeles,
California, June 23, 1948,

162



163

distribution of turbulence fluctuations and - their correlations are
identical at every point of the field. They differ only in scale.

The next important step was the definition of isotropic turbulence
by Taylor (1935, 1936). Apparently the case of homologous turbu-
lence, 7. e., the shear motion, is too complicated for a fundamental
attack by statistical methods. It was Taylor’s fortunate idea to
simplify the problem by the consideration of a uniform and isotropic
field of turbulent fluctuation. Since such a field can be realized at
least approximately in the wind tunnel, the possibility was given for
an experimental check of the statistical ideas.

The next period in the development of the theory of turbulence was
devoted to the analysis of the quantities which are accessible to
measurements in a wind tunnel stream. These quantities are the
correlation functions and the spectral function. The general mathe-
matical analysis of the correlations was executed by Howarth and
myself (von Kérmén and Howarth, 1938). One has to consider five
scalar functions f(r), g(r), h(r), k(r), l(r). 'These functions determine
all double and triple correlations between arbitrary velocity compo-
nents observed at two points because of the tensorial character of the
correlations. The two scalar functions for the double correlations
are defined as follows:

(21, T, T3) Uy (X1 + 7, @, T3)

f(T) = = ’
Uy
o) = Uy (T, T2y 373)_121 (@1, @2 + 71, xs). Q)
. Uy

Because of the continuity equation for incompressible fluids, ¢ = f +

% % For the same reason the triple correlations h, k, and ! can be

expressed by one of them, <. e., by

h _ [ul (131, Tz, fL‘s)]?' (1 (331 + Ty X2y '.Ua)
(7') = [{l,?]al? .

In addition, we also deduced a differential equation from the
Stokes-Navier equation which gives the relation between the time
derivative of the function f and the triple correlation function h.

9 s _2322}_" i = —é?i ii]:
5;(uf>+2[u1/(ar+rh)—2m< + ) @

or? r or

We discussed this equation in two special cases:

(1a)
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a) Small Reynolds Number—in this case the triple correlations can be
neglected and one obtains a self-preserving form for the double
correlation function as function of r/\, where A is defined by the
relation _ —

du? u?
— = — 10y —. 3)
dt A2

b) Large Reynolds Number—in this case the terms containing the
viscosity can be neglected for not too small values of r, and the
functions f and h are assumed to be functions of the variable »/L,
L being a length characterizing the scale of turbulence. The
hypothesis of self-preserving correlation function leads to the
following special results. One can consider three simple cages:

1. L = constant; then we have u? ~ ¢ (Taylor). o
2. Loitsianskii (1939) has shown that if the integral u? f J(r) vidr

ex:sts, it must be independent of time and consequently

WL’ = constant. Then w? ~ gL~
3. If the self-preserving character is extended to all values of r,
i. e., also near r = 0, one has u? ~ ¢!, L ~ #2 (Dryden,

1943). '

On the other hand, Taylor (1938) introduced a spectral function for
the energy passing through a fixed cross section of a turbulent stream as
the Fourier transform F4(n) of the correlation function f(r). The rela-

tions between § and f are given by the following equations:
0

) = f Fo(n) cos —21;1417: R

0
— 4
;@ oenr @)
dr.,
U

In these equations n is the frequency of the fluctuation of the uniform
velocity U as function of time. Relative to the stream, F4(n) can be

replaced by Fi(x), where ) = 2{_77_1 , %. e, the wave number of the

ﬂuctuatlon, measured in the zy-direction.

It is seen that in this period of the development of the turbulence
theory the analytical and experimental means for the study of iso-
tropic turbulence were clearly defined, but with the exception of the
case of very small Reynolds numbers no serious attempt was made to
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find the laws for the shapes of either the correlation or the spectral
functions. I believe this is the principal aim of the period in which
we find ourselves at present, Promising beginnings were made by
Kolmogoroff (1941), Onsager (1945), Weizsicker (1946), and Heigen-
berg (1946). I do not want to follow the special arguments of these
authors. Rather, I want to define the problem clearly and point out
the relations between assumptions and results.

First, we will assume that the three components of the velocity in an
homogeneous isotropie turbulent field, at any instant, can be developed
in the manner of Fourier’s integrals

®
wi = JSI Zixsy 1, 10, t)e'(mw“n“w drrdrodis » (5)
- ®

Second, the intensity of the turbulent field shall be characterized by
the quadratic mean value u¢2 (level of the turbulence). Also, there

exists a function F(x), such that [uds = f F(k") d«’ , where the
0
symbol [u2]; means a partial mean value of the square of the velocity,

the averaging process being restricted for such harmonic components .
whose wave numbers K, ., k; satisfy the relation

K + Ke® + K = K.

If such a function exists, it is connected with the spectral function of
Taylor F1(x;) by the relation

¥1
Fily) = Y f -;; F() (K — n?) di . (6).

This relation was found by Heisenberg (1946). It expresses the
geometrical fact that all oblique waves (Fig. 1) with wave length

2 27
K K1

necessarily contribute in the one-dimensional analysis to the waves

with wave length
2m

K1
Third, it is evident that there must be an equation for the time

derivative of F(x) which corresponds to the equation for the time
derivative of f(r) which has been found by Howarth and myself.
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The pilysical meaning of this equation is evident. Let us start from
the energy equation

ouy’ P\ du; P*uy
+{uiu;+ 6«--—)——— =
7t ot ( , ! ! p/ Ox; oz P

The right side represents the energy dissipation by viscous forces.
The second term on the left side is the work of the Reynolds stresses;
it represents a transfer of energy without actual dissipation. Our

Uj. )

problem is to find %—f by Fourier analysis and averaging process.

One finds the contribution of the viscous forces to be equal to
— 20 F(x)x*. Hence we write formally

%
Figure 1. Contribution of oblique waves to plane waves in direction of 1.
aF
E+w. = — 2?2 F(x) . (8)

Here W.dx is the balance for the energy contained in harmonic com-
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o
ponents contained in the interval dk; obviously f W.dk =0. C.C.
0

Lin (personal communication) has shown that W, = 230, where
ge(k) = 2 (x23C,"'(x) — «3¢y'(x)) and.

3/2 O .
/ h{r) sin (k) dr .

.0

Unfortunately this relation does not help, as far as the determination
of f and h is concerned. For example, if one expresses h in terms of
f by means of the Kdrmdn-Howarth equation, calculates ‘W, and then
substitutes the result in equation (8), one obtains an identity. It
appears that at the present time one needs some additional physical
assumption,

Wy

.'}Cl(x) =

Fourth, we assume that W, can be expressed in the form;
. -
W = [ O{F(x), F(k'), &, &'} di’ . 9
0

The physical meaning of this assumption i§ the existence of a transition
function for energy between the intervals dx and dx’ which depends
only on the energy density and the wave numbers of the two intervals.
It follows from this definition that by interchanging « and «’ one has

@{‘J(K), g(",)i K, K’} = - ®{§(K’)) F(x), K’) "} . (10)

It must be noted that our assumption probably cannot be exact. It
is very probable that the values of & for the difference and the sum of
¢ and -« also enter in the transition function. I believe that the
assumption gives a fair approximation when « and «’ are very different,
but it is certainly untrue if « and ¢’ are nearly equal.

Fifth, we furthermore specify the function @ in the following way;
0 = — CF(x) F(') k'#" ; C = const. (11)
It follows from dimensional reasoning that
a+ao =3/2, g+8 =1/2,
As a result of the sequence of assumptions given above, we obtain
the equation;

@
—ai = C[‘;F“Kﬂfgslz_“(K/)leIQ_ﬁdK’ - 6312—“14”2_5/ ff“(x')x’ﬁdxl]
ot '
0 c

— 2vkF . (12)



168 ‘
Obviously, if & is known for ¢ = 0, equation (12) determines the values
of & for all times. If one neglects the first term on the left side,
which represents the decay of turbulence, and chooses the specific
values @ = 1/2, 8 = — 3/2, one arrives at the theory proposed by
Heisenberg (1946).

Let us consider the case of large Reynolds numbers but agsume that
x is not so large that the term containing the viscogity coefficient
becomes significant. Let us assume also that the first term on the
left side is small by comparison to the second term. Physically, this
means that the energy entering in the interval dk is equal to the
energy which leaves the interval. Then one has the relation:

Faxb f‘l Fol—a(x )1 1Py = Fi-og1/h fwﬁ"(x')x"’dx’. (13)
1] K

This equation is satisfied by the solution F(x) ~ x7%/%, as one can
easily see by substitution in equation (13), This result is independent,
evidently, of the special choice of « and 8. That is the reason why it
was independently found by Onsager (1945), Kolmogoroff (1941) and
Weizsiicker (1946). It is essentially a consequence of dimensional
considerations, Let us now stay with the case of large Reynolds ,
numbers by neglecting again the viscosity term while retaining the
first term on the left side. In other words, we consider the actual
process of decay at large Reynolds numbers. Let us assume that & is
a function of a nondimensional variable x/xo, when xg is a function of
time. This assumption is equivalent to our former assumption that
J(r) is a function of r/L; i. e., we assume that ¥ and f preserve their
shapes during the decay. Evidently ¢ ~ 1/L. Then the function
can be written in the form

u? K
Fi) =— & (-——) .
Ko Ko
Then with «/ky = ¢ and

F ddw w _d u? d
LTI We® Y (E)Eﬁ",
at Ko dt Ko2 dl Ko2 dt

equation (12) becomes

(1 duf @ dke & u? dxg B+ W, =0 (14)
ko di ke dt) Kt dt § o
where '

’W - C [u2]3/2 [q)a£ﬂ f @(s’)(&ﬂ—az’!/ﬁ—ﬂd&’

— @3/2—«:5)/2—9 f ‘I)(f) «f/ﬁdfll
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According to Loitsianskii’'s (1939) results,
1 d’t—bz . 5 dKo

and one obtains the equation
["E]alz
du?

dt

B Ee) = ~ 5C

l:q,a&qﬂe — P32l /2~ﬂ]e°°:| , (15)

where
4 ®
I = [ Q) roginidg 5 17 = [O(E)¢"dE .

Let us assume that 4a + 8 < 5/2 as, for example, in the case of
Heisenberg (1946). Then for small values of ¢ the right side of
equation (15) is small in comparison with the term on the left side,
and one has :

D (£) == const £ .

If 4« + B > 5/2, § begins with a lower power of x than «, one

«w©
can show that the integral [ »(r)dr does not converge, so that
0

Loitsianskii’s result is incorrect. I should like to investigate this
second case in a later work. Let us assume, for the time being, that
Loitsianskii’s result is correct; therefore the first case prevails. Then
it follows that § or ® bebaves as (k/k¢)* for small values of « and is
proportional to (k/ke) /3 for large values of . For any definite choice
of @ and B the differential equation (15) can be solved numerically.
The result that F == «* for small values of « was also found in a different
way by C. C. Lin (personal communication).

For the time being I propose an interpolation formula as follows:

4
o (E) = const. zns_f‘;)—’—ﬁ‘— . (16)

This interpolation formula represents correctly ® (¢) for small and
large values of £ and has the advantage that all calculations can be
carried out analytically by use of known functions. The results are
as follows:
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(K/ Kot)

Aff(K/Ko) = const, m ,

1
(1 + (kalko)?ere ’

(ko)1 /® Kys (Kor) '

51 (Kl/lco) = const.

2/8

T T/3)

2/3
I'(1/3)

The K’s are Bessel functions with imaginary argument. For small
values of «qr,

S(kar)

KoT
gleer) = (kor)t 13 [Klls (ko) — ry K_a (Ko'l')] .17

flkor) =1 —

I'(2/3) xor)“’ , (18)

res \ 2

as suggested by Kolmogoroft’s theory.

I have compared these results with the measurements of Liepmann,
Laufer and Liepmann (1948) carried out at the California Institute
of Technology with the financial assistance of the National Advisory
Committee for Aeronautics.? These observations were made in the
10-foot wind tunnel of the Guggenheim Aeronautical Laboratory,
using a grid whose mesh size was M = 4'. The measurements were
made at a distance z = 40.4M from the grid. Fig. 2 shows the com-
parison of calculated and measured values for the spectral function
Fi(x1). It has to be taken into account that the observed values of
&1(x1) have large scatter; the deviation for high values of «; corresponds
to the beginning influence of viscosity. TFig. 3 gives a comparison
between measured and calculated values of the correlation function
g(r).. This function is chosen because the observations are more
accurate than in any other case. It is seen that the agreement is
almost too good in view of the assumptions made above. One must
remark that there is only one arbitrary constant in the formula for g,
viz., the constant x, which determines the scale of the turbulence. It
is true that some of the data of Liepmann, et al. (1948) do not show
such a good agreement. The agreement is excellent for values of ¢
larger than 0.1, but after that the measured values are higher than
the calculated ones. Possibly some oscillations existing in the wind
tunnel stream were interpreted as turbulence, or the turbulence is not
quite isotropic.

*The N. A, C. A, has kindly granted permission for these data to be used here
before appearing in its official publications.
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I believe that the merits of my deduction are:

a) The agsumptions involved are exactly formulated;

b) The specific assumptions of Heisenberg’s theory concerning the
transition function are not used;

¢) The actual process of decay is considered;

d) The analysis is extended to the lower end of the turbulence
spectrum,

Concerning the casge of large values of « (small values of r), Kovdsz-
nay (1948) introduced an interesting assumption which is more
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Figure 2. Comparison of obgserved and computed values of the frequency spectrum.
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restricting than my fourth assumption. Obviously [ W,dx is the
0

total energy transferred by the Reynolds stresses from the interval
0—«x to the interval x — «. Kovédsznay assumes—following
Kolmogoroff’s (1941) arguments—that this quantity is a function of
F(x) and « only. Then for dimensional reasons

M=4"
o R=/00,000
N o R=300000
XM =<0.4
08
B
#07)-| N
04 N . I 7
;Qf\\ /7(’7)=rﬁ/;/ 7” [K///'Z)'z“K-z/,('z)]
a2 ?./-a/ \\ \<‘o\°
0 7 o1l | S
0 oz a4 as a8 10 12 14 /6
724
7"0 7'-/ ?'_2
p=r X,

Figure 3. Comparison of observed and computed values of the correlation function g{r).
The Reynolds number is based on the stream velocity and the mesh size,

I 4
[ W.dk = const F3/%572,
o

This assumption appears to be correct for large values of «.
However, when the assumption is extended to the range of small
values of x, and one substitutes W, in equation (8), one can calculate
easily 5(x). Neglecting the viscous term, one obtains the relation

(x/k0)

14 35 (/xe)s2rrz (19)

F(x/ko) = const.
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The right side of equation (19) behaves as my corresponding
equation (17) for small and large values of «/xo. It will be interesting
to see how far different transition from small to large values influences
the accordance with observation.
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NOTE ON THE LAW OF DECAY OF ISOTROPIC TURBULENCE
By C. C. LN '

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated by Theodore von Karmén, August 2, 1948

The law of decay of turbulence has been discussed by several authors
by making various assumptions. Recently, Batchelor! made a sum-
marizing discussion of some of these assumptions and their consequences.
The present author has made a different assumption, which seems to be
suggested by Kolmogoroff's concept of turbulence at high Reynolds
numbers, and yet has not been covered by Batchelor’s discussion. The
result seems also to be in reasonably good agreement with all experimental
data available. This result was originally obtained by a discussion of the
spectrum, but a derivation usmg the correlation function itself is presented
here.

According to Kolmogoroff, the double and triple correlation functions
f(r) and A(r) for a distance r apart should be of the forms

w1 — f(n)} = viB, (%>, 1)

w'Bh(r) = v3G, <§7>, 2)

where 3, and §; are definite functions of their argument £ = 7/5 for small
values of £, at high Reynolds numbers, %’ is the intensity of turbulence,
and 5 and v are characteristic measures of length and velocity. Further-
more, » and v are given in terms of the rate of energy dissipation by the
following relations

= (s4/) — (e _ _3adu”

(v¥/e) /4, v = (ve) /¥, €= =5 3)
where ¢ is the time, and » is the kinematic viscosity coefficient. At the
various stages of the decay process, ¢ changes. Compdring the fields at
various stages of decay, one sees that $;(£) and Bs(¢) should be definite
functions of £ for small £ in the course of time, i.e., there is self-preservation
of Bu(¢) and B(¢).

We shall now show that if one makes the assumption of self-preservation
of B; and B, (3)follows as a consequence. Also, a definite law of decay
is obtained which is in agreement with all experimental data so far available.

Substltutmg (1) and (2) into the equation of von Karméan and Howarth,
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Comparison of the present law of decay with experiments,

Thus, the ratios
dv? 1d 3 2
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must be constants. From a consideration of the first, the fourth and the
fifth terms, (3) follows at once. Including the other two terms, one obtains
the additional relations:
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does however include the half-power law which is at least approximately
satisfied by many of the experiments. On the other hand, Dryden’s
analysis? indicates that there are certain data which do depart from it.
One can however take such results into account by the present law.
The comparison is shown in figure 1, where one of Dryden’s diagrams
(von Ké4rman) is replotted according to the present scheme, This is the
case departing most from the half-power law. It is seen that the agree-
ment is good.

A more critical check is to compare the theory with directly measured
values of A, as A depends on the derivative of %’. Such a comparison is
made in figure 2. In making this comparison, the curve is supposed to
begin with a slope of 10vM/U (M being mesh size of the grid, U = x/t)
and approaches asymptotically to a straight line of slope 4vM/U. These
limiting straight lines are shown dotted, where they depart considerably
from the experimental values. In fact, both the experimental points
and these lines are reproduced from a figure kindly supplied to the author
by Mr, Batchelor, based on experimental results of Dr. Townsend. The
theoretical curve is then made to join up smoothly with the asymptotic
straight line. The agreement is good. It may be noted that there is
no freedom in this joining.

The decay process may thus be described as follows, At the beginning
of the decay process, when the Reynolds number of turbulence is high,
there is self-preservation in the sense of (1) and (2) for small . As the
Reynolds number decreases to very low values, the self-preservation
property includes the whole f(r) curve. This is the final stage of the decay
process which has been considered by von Kérméan and Howarth and
investigated very much in detail recently by Batchelor and Townsend.
‘The physical process is much clearer when presented in terms of spectrum.
This discussion will be presented elsewhere,

The appearance of the arbitrary additive constant might seem to be a
drawback in the theory. Actually, it is a necessity, if one follows the idea
of Kolmogoroff. According to this theory, at high Reynolds numbers, the
essential decay mechanism is governed by the high-frequency components
only. On the other hand, the low-frequency components do contribute to
the intensity. For example, if there is a superposed disturbance of low
frequencies, the essential decay mechanism should not change. The
detailed discussion of this point will be presented later in connection with
a study of the energy spectrum. It might be noted that when g = 0, we
have the half-power law of decay, and consequently a self-preservation of
f(r) itself. In any case, this is approximately satisfied for the initial stages
of the decay process, when ¢ — # is small,

! Batchelor, G. K., Qud M, 6, 97-116 (1948).
* Dryden, H, L., Ibid., 1, 28-30 (1943).
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v =A@l — )", 1t = By — k), 4)
where 4, B and 4 are constants. From this, it can be easily seen that
» e = C(t — t)™2 (5)
and hence

w'? = alt — )~ + B, (6)
where C, « and 8 are constants. This leads also to the relation

Nt = 106t — ) {1 + (B/e)(t — o)}, @
for the change of Taylor’s microscale .
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Comparison with experiments of the theoretical law of change of Taylor’s microscale.

Notice that ? increases linearly in £, As 7 is the smallest scale, this
diffusive nature is expected. Equations (5), (6) and (7) are merely
consequences of this relation. Taylor’s microscale X does not in general
possess the diffusive property any more (except when 8 is zero). But it
can be easily verified that Ry = u'A/v and #'~2R, changes linearly in time.

The law of decay just obtained is different from all previous ones. It



On the Concept of Similarity in the Theory
of Isotropic Turbulence

THEODORE VON KARMAN

AND

C. C. Lin

MUCH recent work has been done in the study of isotropic turbulence,
particularly from the point of view of its spectrum. But the underlying
concept is still the assumption of the similarity of the spectrum during the
process of decay, which is equivalent to the idea of self-preservation of the
correlation functions introduced by the senior author. It is however generally
recognized that the correlation function does change its shape during the
process of decay, and hence the concept of self-preservation or similarity

. must be interpreted with suitable restrictions. Under the limitation to low
Reynolds numbers of turbulence, the original idea of Karman-Howarth has
been confirmed. Then the decay consists essentially of viscous dissipation of
energy separately in each individual frequency interval. However, when
turbulent diffusion of energy, i.e., transfer of energy between frequency in-
tervals, accurs at a significant rate, the interpretation of the decay process
and the spectral distribution is quite varied. This can be seen by a compari-
son of the recent publications of Heisenberg,' Batchelor,? Frenkiel,® and the
present authors.® The purpose of the present paper is an attempt to clarify
this situation.

Since some of these discussions are presented in terms of the correlation
functions and others in terms of the spectrum, we shall begin by giving a sys-
tematic demonstration of the relation between these two theories. This can
be easily done by a three-dimensional Fourier transform of the equation for
the change of the double correlation tensor:

8/04(1"*Ri) — 1'3(8 /L) (T s+ Tji) = 204" R, (1)

'W. Heisenberg, Proc. Roy. Soc. London, A 195, 402 (1948).

’G. K. Batchelor, “Recent developments on turbulence research,” general lecture at the
Seventh International Congress for Applied Mechanics, September, 1948,

F. N. Frenkiel, “Comparison between theoretical and experimental laws of decay of tur-
bulence,” presented at the Seventh International Congress for Applied Mechanics, September,
1948.

*Th. v. Karman, Comptes Rendus 226, 2108 (1948); Proc. Nat. Acad. Sci. 34, 531 (1948);
Sverdrup anniversary volume (1949).

5C. C. Lin, Proc. Nat. Acad. Sci. 34, 540 (1948); “On the law of decay and the spectrum
of isotropic turbulence,” presented at the Seventh International Congress for Applied Mechan-
ics, September, 1948. )
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where u'? is the mean square of the turbulent of velocity, ¢ is the time, v is
the kinematic viscosity coefficient, and Ry(§, ¢) and Ty(§, () are the
double and the triple correlation tensor defined by Karman and Howarth
for two points P and P’ separated by a space vector . By contracting the
resultant equation and multiplying it with 4mw«?/3, where « is the wave num-
ber, we obtain the following equation for the change of spectrum:

AF/3t+W = — 2u«*F, (2)
where
F=(4r2/3)Fyp,

Fu(k) ="/ (2x)? f f f Rk, eitdr(§),
W=(4'NK2/3)‘21:K,‘W,.,',‘,

Winla)=1/ <2”>3f f f Ti(ty Detodr(f).

®)

Evaluating these integrals in terms of spherical coordinates in the £-space
we obtain

F=3{F" (k) —«Fi' ()},

Fi(k)= 2u’2/7rf f(r, t) coskrdr;
0

4)
W=34{xH\"(x)—«H{'(x)}, (

o0

«H (k)= 2u’3/1rf h(r, t) sinkrdr.

0

where f(r, t) and A(r, ¢) are the double and triple correlation functions satis-
fying the Karman-Howarth equation:

830 )+ 20/ (Oh/Or-+4h/) = 2 (@f [or*+ 4/ @f/or).  (5)

The relations (4) which connect (2) and (5) have been obtained previously
(1947) by the junior author.® The function F is essentially identical with
Heisenberg’s spectral function, whereas F, is the spectrum function intro-
duced by Taylor about a decade ago on the basis of a one-dimensional
Fourier analysis of wind-tunnel turbulence. The tensor Fj in (3) was intro-
duced and studied by Batchelor and Kampé de Fériét in 1948.

¢C. C. Lin, “Remarks on the spectrum of turbulence,” presented at the First Symposium of
Applied Mathematics, American Mathematical Society, August, 1947; to appear in the
Proceedings of the symposium.
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In this note, we shall restrict ourselves to the spectral theory. We propose
to analyse the spectrum and its change during the process of decay. We dis-
tinguish two extreme cases: (a) the Reynolds number of turbulence is initi-
ally very large, and (b) very small initial Reynolds numbers. The latter case
is very much simpler, and can be explained in a few words after the first
case is investigated. We shall therefore now consider the case of very large
Reynolds numbers.

There is no general principle known which would determine the most
probable energy distribution over the spectrum. The problem we deal with is
not a question of statistical equilibrium in the proper sense. We shall base
our investigations on the concept that during the process of decay the spec-
trum shows a tendency to become similar. Similarity in this case means that
the spectrum can be expressed in the form

F=Up(kl), (6)

where U is a typical velocity and / a typical length. The problem is to con-
nect these typical quantities with measurable ones, such as the kinematic
viscosity v, Loitsiansky’s invariant 7, and the rate of energy dissipation e.
Full similarity would mean that it is possible to express U/ and /[ by unique
relations for all values of x and for the whole process of decay. Dealing with
the experimental evidences and by dimensional considerations, one readily
recognizes that this is not possible. Hence, one looks for a solution which best
satisfies the similarity requirement.

All the authors agree in the following picture: the low frequency ranges
contain the bulk of energy, while the viscous dissipation is negligible. They
furnish energy by the action of inertial forces to the high frequency ranges,
where it is converted into heat. Physically, this was seen by Taylor in the
early stages of the development of the theory, but Kolmogoroff made these
ideas more precise.

Kolmogoroff recognized that based on this physical concept the param-
eters which determine U and [ for the high frequency range are the coel-
ficient of kinomatic viscosity » and the rate of energy dissipation e. The rate
of dissipation in any case is equal to 10vu'?/A?, where X is the microscale in
the dissipation mechanism. It is essential in Kolmogoroff’s concept that '
and A do not appear explicitly in the similarity analysis. Thus,

U= (ve)l, I=(v¥/e)l. )

It is reasonable to assume that at the lower end of this x-range, thé spectrum
becomes independent of ». Then necessarily

Few el ' 8)

as it was concluded by several authors.
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On the other hand, concerning the low frequencies, the junior author has
first shown® that the lowest frequencies involve a fixed parameter, i.e.,
Loitsansky’s invariant 7,, and indeed that the spectrum is of the form 7y«.*

This situation clearly shows the infeasibility of one similarity range extend-
ing from x = Otok = «, and furthermore makes it necessary to consider at
least three ranges: that of the lowest frequencies essentially determined by
Loitsiansky’s invariant, an intermediary range which not necessarily com-
plies with the similarity characteristics of the high range but is significantly
influenced by the rate of dissipation € (though not directly by »), and the
high frequency range in the sense of Kolmogoroff.

We therefore introduce three sets of characteristic quantities, namely, V¥,
L*; V, L; and v, 3 for the lowest, the medium, and the high frequency ranges
respectively. The problem is how to connect them with each other and with
other physical quantities.

Equation (7) gives

v=(ve)}, =0/t (7a)

For the lowest and the medium ranges, we postulate the existence of a
parameter (in general variable with time) which is common to these ranges,
and governs the complicated mechanism of energy transfer in these low
frequency ranges as the viscosity governs transfer of energy into heat in the
high range. The formal statement of this hypothesis is

V*[*=VL=D. 9)

We may call this parameter D the transfer coefficient or eddy diffusion co-
efficient of the turbulence mechanism. Obviously, it has a significance only
when turbulent diffusion is active.

By introducing this hypothesis, we come to the following picture. In the
lowest range, as it was pointed out, the invariant 7, has a decisive influence.
Hence, the characteristic parameters must be determined by 7, and D. In
the medium range, they must depend not only on D, but also on ¢, since this
range supplies the energy to be dissipated in the high frequency range. Thus,
we have

V=(Det, and L= (D¥¢)?, (10)
for the medium range, analogoﬁs to (7a), and
V*=(D5/Jo)} and L*=(J,/DWi, (a1

for the range of lowest frequencies.
The three ranges, with characteristic quantities (7a), (10), and (11) ap-
pear clearly separated when their scales are much different from each other.
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Thus, when
n/L=(D/»)1, (12)

the high and intermediate ranges appear clearly defined over significant
parts of the whole spectrum. In between, there is a transition range depend-
ing only on the parameter ¢ common to both ranges. From dimensional
arguments, we have for this transition range

Froelgoi3 (13)

in accordance with Kolmogoroff’s result for high Reynolds numbers. We
shall see later that the condition (12) warrants the high value for the Rey-
nolds number. Similarly, when

L/LA=(T/TKY, (T=L)V, T*=L*/V¥), (14)

we have a transition range between the low and medium frequencies. In this
transition range, the spectrum depends only on D. Again, dimensional argu-
ments show that there

F~D%, (15)

The physical significance of (14) will be explained below.

The exact behavior in the medium range will be determined by the fact
which of the fixed parameters » or 7, has the predominating influence. We
believe that we can arrive at a satisfactory description of the actual process
by assuming that a change over takes place. We may divide the process into
three stages: (I) the early stage, in which we shall see that 5:L = constant,
(II) the intermediate stage, in which we shall see that L:L* constant, and
(II1) the final stage, in which the distinction of several scales is impossible.
This last case is the well-understood case of complete similarity at extremely
low Reynolds numbers.

(I) The early siage. The turbulence field is actually created by some
mechanism, natural or artificial, which produce individual eddies. Appar-
ently, these eddies converge toward a kind of statistical balance through ex-
change of energy. The first period after homogeneity and isotropy are estab-
lished shall be designated the early stage of the decay process. Experimental
evidence on the decay law in these early stages shows that the similarity pre-
vailing at high frequencies extends to the medium range. This statement is
identical with the conclusion reached by the junior author,® assuming that a
perfect similarity of the correlation function exists with the exception of cor-
relations of points between very large distances. Accordmgly V and L are
constant multiples of » and 3. Hence,

D=V*L*=V L~y (16)



184

and because v = », D is a constant. On the other hand,
yeL¥s= ], 17y

Thus, in the early stage, the spectral function for the lowest frequency range
appears to be independent of time. This fixed range extends as far as the
linear part of the spectrum described by (15).

The spectrum is thus as shown in Fig. 1 (after Batchelor). By integration,
one arrives at

@0

u’2=f F(k)dk==const.V3—up?, (18)
0

where up? is represented by the shaded area. By computing € = - du'?/dt and
using the relation (10), we see that V? ~ ¢~! and

D
u’2=;6(—]l"1-—up"’, Ne=10p4{1— 10up%/ Do}, Ry=Rao{1—10up%/Dy}, (19)

lingar

k— fired —ie—— Similor

Fig. 1. Spectrum during early period.

where R, is the initialAReynolds number

Ryo=lim (u'A/v), (20)

=0
and D, is a quantity proportional to D, defined by
Dy= lim (2/222/»). (21)
10

A formula of the type of Eq. (21) for the diffusion coefficient has been sug-
gested previously (1937) by the senior author.” The law of decay (19) was

"Th. v. Kérman, J. Ae. Sci. 4, 131 (1937).
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given by the junior author.’ The role of the relatively invariant low
frequency components has also been discussed by Heisenberg and Batchelor.

By using the law (19), one can see from (14) that the linear range of the
spectrum would exist essentially for small values of ¢/ 7* This sets a limit to
the period of validity of the law of decay (19). One can easily see the same
limitation from the law (19) itsell.

It can now be seen that the condition (12) is essentially the requirement
that the Reynolds number is large (see (21)). It should be noted however
that the existence of the k~/3-range is not essential in the above discussion of
the decay process. Hence, the Reynolds number need not be large, in order
that the law (19) holds. In fact, for small initial Reynolds numbers, the
Reynolds number at the end of the early period may be so small that the
final period already sets in. This explains the agreement obtained by the
Jjunior author for almost the whole process of decay in comparing his theory
with the experiments of Batchelor and Townsend.®

(IT) The intermediate stage. For large Reynolds numbers, after the disap-
pearance of the linear part of the spectrum, the scales L and L* become of
the same order of magnitude, and it may be expected that the bulk of tur-
bulent energy of scale L shares the behavior of the large eddies of scale L*.
The ratios L/L* and V/V* are expected to be constants. These conditions
lead at once to the law of decay discussed by the senior author.® It is char-
acterized by dN?/d(vt) = 7. A

During this period, the spectrum at low and medium {requencies depends
only on the parameters 7, and v, and must therefore be of the form

F=Jw'®(xL), (22)

where ® (kL) behaves as (kL)='"/ for kL>>?, and approaches unity when
kL - 0. An interpolation formula for ® has been suggested and checked by
correlation measurements by the senior author.

The diffusion coefficient in this range is easily seen to be proportional to
u'*A?/v. Hence, the condition (12) is again that the Reynolds number should
be large. When the Reynolds number becomes very small, the scales  and L
are of the same order, so that there is only one scale for all frequencies. We
then approach a complete similarity, and are at the beginning of the final
period. With reference to (12), we see that it should happen when R} is of the
ogpder of unity. According to the experiments of Batchelor and Townsend,
the final period sets in at R, ~ 5.

The intermediate stage is very long, if the initial Reynolds number is very
large. It begins with some value of Ry close to Ry, During this period, R)
changes according to the power law ¢~ %%, Although the supposed origin of

sG.‘K. Batchelor and A. A. Townsend, Proc. Roy. Soc. London, A 194, 527 (1948).



186

time in this formula is unknown, it must be before the beginning of the
early period, since the slope of the A? versus o curve decreases. Thus, Ry
become of the order of unity only when ¢ is of the order T*R),'*/. One ex-
pects therefore to find an intermediate stage many times the early period for
high initial Reynolds numbers.

The above predictions are based on some simple hypotheses and physical
picture, and should be confirmed experimentally. Unfortunately, there does
not seem to be any experimental data available for sufficiently high Reynolds
numbers and over a sufficiently long period. Most of the decay measure-
ments at high Reynolds numbers hardly extend beyond the early period,
when the law of decay (19) is quite adequate. Also, it must be kept in mind
that the above discussions hold only for an infinite field of turbulence. In an
actual experiment, the scale of the apparatus might become comparable
with the scale of turbulence. In such cases, the significance of Loitsiansky’s
invariant becomes uncertain.
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